
- •7.2. Пуск двигателя постоянного тока независимого возбуждения до основной угловой скорости и ударное приложение нагрузки
- •7.3. Пуск двигателя постоянного тока
- •7.4. Динамическое торможение двигателя постоянного тока независимого возбуждения
- •7.5. Торможение противовключением и реверсирование двигателя постоянного тока независимого возбуждения
- •7.6. Торможение двигателя постоянного тока независимого возбуждения от угловой скорости выше основной до основной
- •7.7. Переходные режимы в приводах с двигателями постоянного тока последовательного возбуждения
- •7.8. Переходные режимы в приводах с асинхронными двигателями трехфазного тока
- •7.9. Электромагнитные переходные
- •8.1. Общие положения
7.4. Динамическое торможение двигателя постоянного тока независимого возбуждения
Если обмотку якоря работающего двигателя посредством переключателя К отключить от сети и замкнуть на дополнительный резистор R1 (рис. 7.13), то двигатель переходит в генераторный режим динамического торможения и снижает свою угловую скорость (рис. 7.14).
Обмотка возбуждения в процессе торможения остается присоединенной к сети постоянного тока.
Основные уравнения, характеризующие процесс динамического торможения:
сω + iR = 0; (7.42)
ci
= J
+Mc
,
где R = R1 +Rя .
Совместное
решение этих уравнений относительноω
дает:
ω = — Δωc + C , (7.43)
Постоянная интегрирования С определяется из начальных условий. При t = 0
ω = ωнач = ωс ;
С = ωнач + Δωс ,
где ω нач = ωс — угловая скорость двигателя в момент переключения с двигательного режима на динамическое тор-
Рис. 7.13. Принципиальная схема динамического торможения двигателя постоянного тока независимого возбуждения.
Рис. 7.14. Механические характеристики двигателя постоянного тока независимого возбуждения при переходе из двигательного режима в режим динамического торможения.
можение; Δωс = McR/c2 — абсолютное значение перепада угловой скорости, определяемое по характеристике динамического торможения при моменте нагрузки Мс (рис. 7.14). После подстановки значения С в (7.43) получим:
ω
= — Δωс
+ (ω
нач
+ Δωс)
. (7.44)
При динамическом торможении без нагрузки (Мс = 0) Δωс = 0 и ω нач = ω0, тогда
ω= ω0
. (7.45)
На рис. 7.15, а показаны характеристики ω = f (t) при динамическом торможении в случае, когда торможение производится под нагрузкой (кривая 1) и когда Мс = 0 (кривая 2).
При торможении под нагрузкой кривая ω = f (t) асимптотически стремится к угловой скорости —Δωс, если момент нагрузки активный, например, в случае опускающегося груза в приводе крановой установки. Если момент нагрузки реактивный, то торможение электропривода закончится при угловой скорости ω = 0 (точка b).
При торможении без нагрузки кривая ω = f (t) асимптотически приближается к 0, начальная угловая скорость в атом случае ω нач = ω 0.
Рис. 7.15. Кривые ω = f (t) (а) и i = f1 (t) (б) при динамическом торможении двигателя постоянного тока независимого возбуждения.
Для определения i = f1 (t) можно воспользоваться формулой (7.8), если подставить в нее постоянную интегрирования С, соответствующую данным начальным условиям
С = сTм(Iнач + Iс) /J.
Тогда
i = – (Iнач + Iс) +Iс . (7.46)
На рис. 7.15, б кривая 1 иллюстрирует изменение тока в цепи якоря при динамическом торможении и наличии активной нагрузки на валу двигателя, которой соответствует ток Iс. При реактивном моменте процесс закончится в точке b при ω = 0.
Кривая 2 иллюстрирует процесс динамического торможения при Мс — 0. Ток в цепи якоря для этого случая определяется по формуле
i
= –Iнач
, (7.47)
Абсолютное значение тока в момент переключения из двигательного режима в режим динамического торможения
Iнач = сωнач/R. (7.48)
Время
торможения от начальной угловой скоростиωнач
до текущей ω1
может быть получено из (7.44), если решить
его относительно
t1
т. е.
t1 = Тм ln (7.49)
При
торможении до полной остановки (ω1
= 0)
tт = Тм1n (7.50)
Когда Iс = 0; Δωс = 0 и теоретически время tт = ∞, практически процесс торможения можно считать законченным за время tт = 3TМ. Постоянная времени определяется аналогично тому, как это производилось в § 7.2. В данном случае учитывается суммарное сопротивление цепи якоря двигателя при динамическом торможении.
Время торможения может быть также определено на основании (7.46). Например, при торможении до полной остановки, когда i = 0, время торможения
tт
= Тм1n (7.51)