Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
14
Добавлен:
03.03.2016
Размер:
218.11 Кб
Скачать

Развитие в ХХ в. строительства в частности, железнодорожного, дорожного, стимулировало проведение исследований в области механики сыпучей среды и механики грунтов. Последняя возникла на базе теории упругости, теории сыпучих тел и гидромеханики, т.е. механика грунтов развивалась как наука на стыке ряда направлений механики и физических теорий. Несомненны научные заслуги в этой области Н. М. Герсеванова, который выяснил условия совместной работы деформируемых оснований и возводимых на них сооружений.

В 20–30-е гг. ХХ ст. появилась теория фильтрации как направление, связывающее идеи теории грунтов и гидродинамики. Непосредственной причиной создания теории фильтрации стали проблемы гидротехнического строительства, а также эксплуатации нефтяных месторождений. Впервые задачи фильтрации были сформулированы Н. Е. Жуковским и австрийским ученым Форхеймером, а также другими учеными из разных стран.

В 1930-е гг. началась разработка механики материалов и теории их прочности. Из-за больших объемов строительных работ, развитие новых отраслей машиностроения (авто- и авиастроение, транспортное и др.) существовала острая необходимость в металле все более высокого качества, кроме того, требования предїявляеміе к строительным и машиностроительным материалам определили поиски новых материалов с заранее заданными свойствами. Появляются и новые методы обработки металлов, важнейшей из них стала электросварка. Основоположником сварки в СССР был выдающийся мостостроитель Е. О. Патон (1870–1953). Метод соединения элементов металлоконструкций с помощью сварки стал лишь одним из практических выводов прикладной механики.

Во второй половине ХХ в. меняются интересы исследователей, работавших в разных направлениях механики. Интересы эти в значительной степени оказываются обусловленными практическими задачами, поэтому в аналитической механике интенсивно изучаются динамика послепеременной массы, неголономная механика, теория гироскопов. Существенное развитие получает нелинейная механика, занявшая важное место в исследованиях колебательных процессов; идеи теории колебаний пересеклись едва ли не со всеми направлениями прикладной механики. Развиваются динамика машин, теория машин автоматического действия. На стыке идей алгебры, биомеханики и теории регулирования возникает новая наука – кибернетика, основоположником которой стал Норберт Винер (1894–1964). При создании кибернетики были использованы идеи многих ученых, в частности А. Н. Колмогорова.

С началом научно-технической революции (50-е гг. ХХ в.) резко меняется и тематики научных исследований и их темпы. Одной из характерных особенностей НТР является то, что наука становится непосредственно производительной силой: она вызывает к жизни технические решения, определяет появление новых отраслей техники, новых видов производств. Как подчеркивает А. Н. Боголюбов, автор книги «Механика в истории человечества», в ее развитии теперь преобладает интегральный путь, когда новое направление возникает на стыке других, зачастую весьма разнородных.

Древнейшим из учений механики, как известно, являлось учение о покое – статика; учение о движении возникло значительно позже. Затем появилась теория колебаний, и уже в ХХ в. – теория устойчивости. С точки зрения объекта исследования можно различать механику микромира, механику среды, механику твердого тела и системы тел, небесную механику. Некоторые разделы механики развились в самостоятельные научные направления, в частности это механика тела переменной массы, неголономная механика, теория гироскопов. К механике сложной среды относятся такие научные дисциплины: сопротивление материалов, механика материалов, теория упругости, теория пластичности, гидравлика, гидродинамика, аэродинамика, механика. И практически все это – ХХ в. Именно в ХХ в. происходит окончательное становление науки механики. Уточняя объект исследования, развивается строительная механика, механика машин, механика корабля, механика самолета, баллистика, механика ракетного движения, механика живых организмов, биомеханика. А. Н. Богомолов большой знаток истории механики и автор многих работ в этой области, утверждает, что все эти науки постоянно взаимодействуют, дробятся и порождают новые направления – «статистическая классификация наук теперь просто невозможна, поскольку науки находятся в непрерывном развитии». Исследования последних лет в механике в целом и в отдельных ее отраслях проводятся в наибольшем приближении к реальным условиям, поэтому многие работы в области, скажем, теории упругости, пересекаются с исследованиями по механике машин, гидродинамике, строительной механике, теории пластичности и даже геометрии (работы А. В. Погорелова).

Современная НТР вызвала к жизни и множество новых технических проблем. Пути механики часто пересекаются с искусством. Много общих задач у механики с архитектурой и скульптурой. Живопись внесла важный вклад в создание начертательной и проективной геометрии, что оказало влияние на развитие едва ли не всех отраслей механики. Сегодня механика, как и другие науки, все в большей степени становится делом не отдельных ученых, а целых научных коллективов, в отличие от ХVII–XVIII вв., когда достижения были индивидуальными, одиночными. К концу ХIХ в. появляются научные коллективы, сперва небольшие; к середине ХХ в. число таких коллективов растет, а с ним растет и объем исследований. Все больше расширяется диапазон исследований механики, она «вклинивается» в биологию, геометрию, другие естественные науки, в искусство, позволяет успешно решать инженерные задачи, вооружает инженеров научной основой для их плодотворной деятельности.

 

ВЫВОДЫ

С развитием феодальных отношений ХIII–XIV вв., строительством городов, созданием защитных сооружений, появлением орудий разрушения различных конструкций ученые начинают интересоваться вопросами динамики (учение об импетусе), исследованием равномерного и неравномерного движения, приближаясь к пониманию механических явлений. В это же время возникает профессия инженера, который был специалистом довольно «широкого» профиля: строит мельницы, водяные колеса, выступает архитектором, механиком и т.д. Основой подготовки таких специалистов было ученичество.

Эпоха Ренессанса нуждалась в талантливых людях, многосторонних и образованных. Возрастает роль математики при расчетах зданий, что явилось одним из первых шагов перехода строительной механики от теоретической науки к прикладной, которой посвящается большое количество работ: создается наука о движении.

С конца XVI и на протяжении ХVII в. в теоретическом естествознании, математике и механике происходит длинная цепь открытий и разработка теорий. Результатом этой большой и интенсивной деятельности ученых оказалась новая система миропознания, поэтому этот период принято называть научной революцией (открытия Коперника, Кеплера, Т. Брагге). Постановка и решение задач механики ведутся очень активно. Бурно развивается практическая механика. Глубокие познания архитекторов в механике дали возможность возводить шедевры архитектуры в стиле барокко, а это потребовало разработки новых инженерных решений и создания механики материалов.

Промышленный переворот, начавшийся с ХVIII в., также дал толчок для развития механики. Потребовалось значительное количество инженеров, поэтому стали открываться технические школы. Механика «проникла» в число университетских дисциплин.

В ХІХ в. быстро развивается машинная промышленность, которая требует ответов на многие возникающие вопросы. Появляются исследования по теории упругости, теории сооружений, в значительной степени расширяются знания в области динамики машин, разрабатывается метод графического расчета ферм, в механику все больше и больше проникают графические методы расчета, начинается исследовательская работа в области теоретической математики, возникает интерес к задачам механики сплошной среды, сопротивления материалов, гидродинамики, теории колебаний, теории устойчивости, аэродинамики.

Начало ХХ в. и последующие десятилетия оказались достаточно плодотворными для становления теоретической и прикладной механики, высказываются многие идеи, развитые в научные направления. Идет интенсивная работа во многих направлениях механики, вызванная бурным развитием техники; начинаются разработки механики материалов и теории их прочности. Интересы ученых в значительной части обусловлены практическими задачами, обусловленными НТР, появлением электроники, исследованием космоса и многими другими проблемами.

1[2] Цит. по кн..: А.Н.Боголюбов. Механика в истории человечества. – М.: Наука, 1978. – С. 43– 44.

1 Цит. по кн.: Богомолов А.Н. Механика в истории человечества – М.: Наука. – 1978. – С.61.

1 Последователи Р. Декарта в философии и естествознании. Основа картезианства – последовательный дуализм, т.е. разделенного мира на две самостоятельные и независимые субстанции – протяженную и мыслящею.

30

Соседние файлы в папке ИСТОРИЯ ИНЖЕНЕРНОЙ ДЕЯТЕЛЬНОСТИ - УСТИМЕНКО Т.А