
- •Санкт-петербургский университет государственной противопожарной службы мчс россии
- •Тема 1. Физико-химическая природа горения Введение
- •Определение горения.
- •Механизм химических реакций при горении.
- •1.3.Влияние различных факторов на скорость химических реакций при горении
- •1.4. Основные процессы, происходящие при горении.
- •1.5. Опасные факторы пожара и их воздействие на человека
- •Материальный баланс процессов горения
- •Тема 2. Пожарная опасность неорганических веществ
- •2.1. Пожарная опасность металлов
- •Образуют водород
- •2.2.2. VII группа (подгруппа VII а) Галогены (солероды)
- •2.2.3. VI группа (подгруппа VI а) Кислород и халькогены (рождающие медь)
- •2.2.4. V группа (подгруппа V а) Подгруппа азота
- •2.2.5. IV группа (подгруппа IV а) Подгруппа углерода
- •2.2.6. III группа (подгруппа III а) Подгруппа алюминия
- •2.2.7. II группа (подгруппа II а) Щелочноземельные металлы
- •2.2.8. VIII группа (подгруппа VIII а) Инертные газы
- •2.2.9. Водород
- •2.3. Классификация горючих веществ и материалов.
- •2.3.1. Окислители.
- •Тема 3. Пожароопасные свойства углеводородов
- •3.1. Ациклические предельные углеводороды (алканы)
- •1. Основные реакции алканов – реакции замещения водорода, идущие по свободно-радикальному механизму.
- •3.2. Ациклические непредельные углеводороды
- •Непредельные углеводороды
- •3.3. Галогенпроизводные углеводородов
- •3.4. Насыщенные циклические соединения (циклоалканы)
- •3.5. Ароматические углеводороды (арены)
- •3.5.1. Конденсированные циклические системы
- •Тема 4. Пожароопасные свойства кислородсодержащих органических соединений
- •4.1. Спирты
- •Классификация спиртов
- •4.1.1. Предельные одноатомные спирты
- •4.1.2. Многоатомные спирты
- •4.1.3. Фенолы
- •4.2. Простые эфиры спиртов
- •4.3. Органические перекисные соединения
- •4.4. Альдегиды и кетоны
- •4.5. Карбоновые кислоты
- •Классификация карбоновых кислот
- •4.5.1. Предельные одноосновные карбоновые кислоты
- •4.5.2. Непредельные карбоновые кислоты
- •4.5.3. Высшие жирные кислоты
- •4.5.4. Мыла
- •4.6. Сложные эфиры
- •4.6.1. Жиры
- •4.6.2. Воски
- •Тема 5. Органические соединения, содержащие серу и азот
- •5.1. Сероорганические соединения
- •5.1.1. Тиолы
- •5.1.2. Органические сульфиды
- •5.1.3. Эфиры серной кислоты
- •5.2. Азотсодержащие органические соединения
- •5.2.1. Амины
- •Первичные алифатические амины
- •Вторичные алифатические амины
- •Первичные ароматические амины
- •Химические свойства солей диазония
- •5.2.2. Цвет и строение вещества
- •5.2.3. Нитросоединения
- •Тема 6. Полимеры и полимерные материалы
- •Классификация полимеров
- •Отличительные особенности полимеров
- •6.1. Способы получения полимеров
- •6.1.1. Реакции полимеризации
- •6.1.2. Реакции поликонденсации
- •6.2. Деструкция полимеров
- •6Редельно допустимые концентрации в воздухе
- •6.3. Факторы, влияющие на термостойкость полимеров
- •6.4. Полимерные материалы
- •6.4.1. Каучуки
- •6.4.2. Пластмассы
- •6.4.3. Химические волокна
- •Тема 7. Химия огнетушащих веществ
- •7.1. Способы прекращения горения
- •Отв и способы прекращения горения
- •Применение отв для тушения пожаров различных классов
- •7. 2. Вода как отв
- •Преимущества воды как отв
- •1. Дешевизна, доступность, простота: применения, хранения, транспортировки, подачи.
- •Недостатки воды как отв
- •1. Высокая температура замерзания.
- •Если угол не устанавливается, то смачивание полное, капля тонкой пленкой растекается по поверхности твердого тела.
- •Пути повышения эффективности воды как отв
- •7.3. Пены как отв
- •7.3.1. Общая характеристика пенообразователей
- •Классификация пенообразователей по составу и назначению
- •7.3.4. Пенообразователи целевого назначения
- •7.4. Негорючие газы как отв
- •7.5. Ингибиторы горения
- •7.5.1. Хладоны как отв
- •7.5.2. Тушение порошковыми составами
- •Литература
- •Нормативные правовые акты*
6.2. Деструкция полимеров
Деструкция – это разрушение полимеров под воздействием химических и физических факторов.
В результате деструкции происходит разрыв химических связей, уменьшение молярной массы, потеря нужных свойств.
Различают несколько видов деструкции. Деление на различные виды условно, но основными из них являются следующие.
1. Химическая деструкция происходит под действием химических реагентов – воды, спиртов, кислот, щелочей.
Наиболее распространенный случай – это гидролиз полимеров. Особенно нежелательно использовать подобные полимеры в качестве антикоррозионных покрытий.
Однако есть полимеры, гидролиз которых используется в практических целях. На основе полилактидов – эфиров молочной кислоты – изготавливают хирургические нити:
ОН – СН – С = О + О = С – СН – СН3ОН – СН – С – О – С – СН – ОН + Н2О
ll ll
СН3ОН ОН СН3CН3О О СН3
молочная кислота полилактид
Полилактиды представляю собой сложные эфиры, и в организме в результате гидролиза распадаются на молекулы молочной кислоты (обратная реакция), а далее окисляются до углекислого газа и воды.
2. Механическая деструкция полимеров – это всегда необратимая деформация.
3. Фотохимическая деструкция протекает под действием света. Так, полиэтилен в темноте не теряет своих свойств несколько лет, но на свету разрушается достаточно быстро.
4. Радиационная деструкция является результатом действия на полимеры , , и -излучения, а также потока нейтронов.
Однако некоторые материалы под действием радиоактивного излучения приобретают повышенную стойкость. Например, из полиэтилена, обработанного таким образом, изготавливают основы станков.
5. Биологическая деструкция полимеров происходит под воздействием микроорганизмов.
В настоящее время встала глобальная проблема ликвидации отходов полимерных материалов. И один из путей решения этой проблемы - использование пластмасс, подверженных биологическому разложению. В некоторых странах уже приняты законы о запрете и налоге на материалы, не разлагающихся в природе.
6. Наиболее распространенным видом деструкции полимеров является термоокислительная деструкция, протекающая под воздействием высокой температуры и окислителя (чаще кислорода воздуха).
Для каждого полимера характерна определенная область температур, в которой наблюдается его сравнительно быстрый распад (термическая деструкция). Химические связи при этом могут разрываться в любом месте макромолекулы по законна случая, либо в определенных местах, например, на концах полимерных молекул.
Термоокислительная деструкция вследствие совместного действия тепла и кислорода наблюдается при более низкой температуре, чем термическая.
В результате разложения полимера образуются летучие продукты (горючие и негорючие) и обугленный (карбонизированный остаток).
В состав горючих летучих продуктов входят водород Н2, угарный газ СО, метан СН4, ацетилен С2Н2, этилен С2Н4, этан С2Н6, пропен С3Н6, бутен С4Н8. Кроме этого, летучие продукты термоокислительной деструкции полимеров могут содержать различное количество мономеров: от 1 % при разложении полиэтилена до 90 % при разложении полиметилметакрилата (оргстекла).
Результатом протекающей термоокислительной деструкции может быть воспламенение полимеров.
При термическом разложении и горении пластмасс выделяются следующие высокотоксичные компоненты, входящие в их состав. Особое внимание следует обратить на то, что уже при сравнительно невысоких температурах начинается выделение токсичных веществ, которое с ростом температуры резко усиливается. Т.е. уже на начальной стадии пожара атмосфера становится крайне токсичной для людей. Не случайно главной причиной гибели людей на пожарах являются не ожоги, а отравление токсичными продуктами термоокислительной деструкции полимеров.
Таблица 6.2
Основные токсичные продукты, выделяемые из полимерных материалов при различных температурах и их