
- •Санкт-петербургский университет государственной противопожарной службы мчс россии
- •Тема 1. Физико-химическая природа горения Введение
- •Определение горения.
- •Механизм химических реакций при горении.
- •1.3.Влияние различных факторов на скорость химических реакций при горении
- •1.4. Основные процессы, происходящие при горении.
- •1.5. Опасные факторы пожара и их воздействие на человека
- •Материальный баланс процессов горения
- •Тема 2. Пожарная опасность неорганических веществ
- •2.1. Пожарная опасность металлов
- •Образуют водород
- •2.2.2. VII группа (подгруппа VII а) Галогены (солероды)
- •2.2.3. VI группа (подгруппа VI а) Кислород и халькогены (рождающие медь)
- •2.2.4. V группа (подгруппа V а) Подгруппа азота
- •2.2.5. IV группа (подгруппа IV а) Подгруппа углерода
- •2.2.6. III группа (подгруппа III а) Подгруппа алюминия
- •2.2.7. II группа (подгруппа II а) Щелочноземельные металлы
- •2.2.8. VIII группа (подгруппа VIII а) Инертные газы
- •2.2.9. Водород
- •2.3. Классификация горючих веществ и материалов.
- •2.3.1. Окислители.
- •Тема 3. Пожароопасные свойства углеводородов
- •3.1. Ациклические предельные углеводороды (алканы)
- •1. Основные реакции алканов – реакции замещения водорода, идущие по свободно-радикальному механизму.
- •3.2. Ациклические непредельные углеводороды
- •Непредельные углеводороды
- •3.3. Галогенпроизводные углеводородов
- •3.4. Насыщенные циклические соединения (циклоалканы)
- •3.5. Ароматические углеводороды (арены)
- •3.5.1. Конденсированные циклические системы
- •Тема 4. Пожароопасные свойства кислородсодержащих органических соединений
- •4.1. Спирты
- •Классификация спиртов
- •4.1.1. Предельные одноатомные спирты
- •4.1.2. Многоатомные спирты
- •4.1.3. Фенолы
- •4.2. Простые эфиры спиртов
- •4.3. Органические перекисные соединения
- •4.4. Альдегиды и кетоны
- •4.5. Карбоновые кислоты
- •Классификация карбоновых кислот
- •4.5.1. Предельные одноосновные карбоновые кислоты
- •4.5.2. Непредельные карбоновые кислоты
- •4.5.3. Высшие жирные кислоты
- •4.5.4. Мыла
- •4.6. Сложные эфиры
- •4.6.1. Жиры
- •4.6.2. Воски
- •Тема 5. Органические соединения, содержащие серу и азот
- •5.1. Сероорганические соединения
- •5.1.1. Тиолы
- •5.1.2. Органические сульфиды
- •5.1.3. Эфиры серной кислоты
- •5.2. Азотсодержащие органические соединения
- •5.2.1. Амины
- •Первичные алифатические амины
- •Вторичные алифатические амины
- •Первичные ароматические амины
- •Химические свойства солей диазония
- •5.2.2. Цвет и строение вещества
- •5.2.3. Нитросоединения
- •Тема 6. Полимеры и полимерные материалы
- •Классификация полимеров
- •Отличительные особенности полимеров
- •6.1. Способы получения полимеров
- •6.1.1. Реакции полимеризации
- •6.1.2. Реакции поликонденсации
- •6.2. Деструкция полимеров
- •6Редельно допустимые концентрации в воздухе
- •6.3. Факторы, влияющие на термостойкость полимеров
- •6.4. Полимерные материалы
- •6.4.1. Каучуки
- •6.4.2. Пластмассы
- •6.4.3. Химические волокна
- •Тема 7. Химия огнетушащих веществ
- •7.1. Способы прекращения горения
- •Отв и способы прекращения горения
- •Применение отв для тушения пожаров различных классов
- •7. 2. Вода как отв
- •Преимущества воды как отв
- •1. Дешевизна, доступность, простота: применения, хранения, транспортировки, подачи.
- •Недостатки воды как отв
- •1. Высокая температура замерзания.
- •Если угол не устанавливается, то смачивание полное, капля тонкой пленкой растекается по поверхности твердого тела.
- •Пути повышения эффективности воды как отв
- •7.3. Пены как отв
- •7.3.1. Общая характеристика пенообразователей
- •Классификация пенообразователей по составу и назначению
- •7.3.4. Пенообразователи целевого назначения
- •7.4. Негорючие газы как отв
- •7.5. Ингибиторы горения
- •7.5.1. Хладоны как отв
- •7.5.2. Тушение порошковыми составами
- •Литература
- •Нормативные правовые акты*
5.1.2. Органические сульфиды
Сульфиды – сернистые аналоги простых эфиров.
Получаются сульфиды по схеме
Соли тиолов (тиоляты) + галогенуглеводород = сульфид + иодид натрия
С2Н5SNa+ С2Н5IС2Н5–S– С2Н5+NaI
тиолят натрия иодэтан диэтилсульфид
Алкилсульфидом является иприт – стойкое отравляющее вещество кожно-нарывного действия. Иприт обладает чрезвычайно большой ядовитостью, действуя не только на кожу, но и на весь организм.
Cl–CH2–CH2
\
S,* -дихлордиэтилсульфид (иприт)
/
Cl–*CH2 –*CH2
Совершенно чистый иприт представляет собой бесцветное кристаллическое вещество. Технический иприт – бурая жидкость с запахом, напоминающим запах горчицы (в связи с этим возникло и другое название иприта – “горчичный газ”).
5.1.3. Эфиры серной кислоты
При взаимодействии концентрированной серной кислоты и спиртов можно получить кислые и полные эфиры серной кислоты.
Серная кислота (конц.) + спирт = сложный эфир серной кислоты + вода
ОН – SO2 + С2Н5OHОН –SO2 +H2O[+ С2Н5OH]C2H5О –SO2+H2O
OHOC2H5 OC2H5
серная этанол диметилсульфат
кислота
Диметилсульфат широко используется в органическом синтезе.
Диметилсульфат очень ядовит, и при работе с ним надо соблюдать крайнюю осторожность, особенно избегая попадания его на кожу.
5.2. Азотсодержащие органические соединения
5.2.1. Амины
Аминами называются производные аммиака NH3, в молекуле которого один или несколько атомов водорода замещены остатками углеводородов.
Аминами можно рассматривать и как производные углеводородов, образованные замещением атомов водорода в углеводородах на группы
NH2 (первичный амин); NHR (вторичный амин); NR'R" (третичный амин).
В зависимости от числа атомов водорода у атома азота, замещенных радикалами, амины называют первичными, вторичными или третичными.
Группа - NH2, входящая в состав первичных аминов, называется аминогруппой. Группа >NH во вторичных аминах называется иминогруппой.
Номенклатура аминов
Обычно амины называют по тем радикалам, которые входят в их молекулу, с прибавлением слова амин.
СН3NH2 – метиламин; (СН3 )2NH – диметиламин; (СН3 )3N – триметиламин.
Ароматические амины имеют особенности номенклатуры.
С6Н5NH2 – фениламин или анилин.
Физические свойства аминов
Первые представители аминов – метиламин, диметиламин, триметиламин – представляют собой при обычной температуре газообразные вещества. Остальные низшие амины – жидкости. Высшие амины – твердые вещества.
Первые представители, подобно аммиаку, растворяются в воде в больших количествах; высшие амины в воде нерастворимы.
Низшие представители обладают сильным запахом. Метиламин CH3NH2 содержится в некоторых растениях, имеет запах аммиака; триметиламин в концентрированном состоянии имеет запах, сходный с запахом аммиака, но в малых концентрациях, с которыми обычно приходится встречаться, имеет очень неприятный запах гнилой рыбы.
Триметиламин (CH3)3N в довольно больших количествах содержится в селедочном рассоле, а также в ряде растений, например, в цветах одного вида боярышника.
Диамины – это группа соединений, которые можно рассматривать как углеводороды, в молекулах которых два атома водорода замещены аминогруппами (NH2).
Путресцин был впервые найден в гное. Он представляет собой тетраметилендиамин:
Н2С – СН2– СН2– СН2
тетраметилендиамин
NH2NH2
Кадаверин, гомолог путресцина, был найден в разлагающихся трупах (cadaver – труп), он является пентаметилендиамином:
Н2С – СН2– СН2– СН2– СН2
пентаметилендиамин
NH2NH2
Путресцин и кадаверин образуются из аминокислот при гниении белковых веществ. Оба вещества – сильные основания.
Органические основания, образующиеся при гниении трупов (в том числе путресцин и кадаверин), объединяют общим названием птомаины. Птомаины ядовиты.
Следующий представитель диаминов – гексаметилендиамин – применя-ется для получения ценного синтетического волокна – найлона.
Н2С – СН2– СН2– СН2– СН2– СН2
гексаметилендиамин
NH2NH2
Способы получения аминов
1. Действие аммиака на алкилгалогениды (галогенуглеводороды) - реакция Гофмана.
Начальная реакция:
СН3I+NH3= [CH3NH3]I
иодметан метиламмонийиодид
Далее реакции идут следующим образом:
[CH3NH3]I + NH3 CH3NH2 + NH4I
метиламин
CH3NH2 + СН3I [(CH3)2NH2]I
диметиламмонийиодид
[(CH3)2NH2]I + NH3 (CH3)2NH + NH4I
диметиламин
(CH3)2NH + СН3I [(CH3)3NH]I
триметиламмонийиодид
[(CH3)3NH]I + NH3 (CH3)3N + NH4I
триметиламин
(CH3)3N + СН3I [(CH3)4N]I
тетраметиламмонийиодид –
соль четырехзамещенного аммония
Исходный метиламин может быть получен и следующим образом:
[CH3NH3]I + NaOH = CH3NH2 + NaI + H2O
метиламин
В результате этих реакций получается смесь замещенных солей аммония ( на первых стадиях реакцию остановить невозможно).
Подобная реакция позволяет получать так называемые инвертные мыла, мыла, которые используются в кислой среде.
(CH3)3N+ С16Н33Cl[(CH3)3NС16Н33]Cl
триметилцетиламмоний хлорид
Моющим действием здесь обладает не анион, как в обычных мылах, а катион. Особенность этого мыла в том, что они используются в кислой среде.
Такие мыла не сушат кожу, имеющую, как известно, кислую среду с
рН = 5,5.
В структуру инвертного мыла можно ввести заместитель, проявляющий антимикробную активность. В этом случае синтезируют бактерицидные мыла, используемые в хирургической практике.
2. Восстановление нитросоединений (катализатор никель)
СН3NO2+ 3H2=CH3NH2+ 2Н2О
3. В природных условиях алифатические амины образуются в результате гнилостных бактериальных процессов разложения азотистых веществ – в первую очередь при разложении аминокислот, образующихся из белков. Такие процессы происходят в кишечнике человека и животных.
Химические свойства аминов
1. Взаимодействие с кислотами
Амин + кислота = соль
Реакция аналогична реакции образования солей аммония:
NH3+HCl=NH4Cl
аммиак хлорид аммония
CH3NH2+HCl= [CH3NH3]Cl
метиламин хлорид метиламмония
2. Реакция с азотистой кислотой
Эта реакция дает возможность различать первичные, вторичные и третичные алифатические, а также ароматические амины, т.к. они по-разному относятся к действию азотистой кислоты.
Азотистая кислота используется в момент выделения по реакции разбавленной соляной кислоты с нитритом натрия, проводимой на холоду:
NaNO2(тв) +HCl(водн)NaCl(водн) +HON=O(водн)