
- •Санкт-петербургский университет государственной противопожарной службы мчс россии
- •Тема 1. Физико-химическая природа горения Введение
- •Определение горения.
- •Механизм химических реакций при горении.
- •1.3.Влияние различных факторов на скорость химических реакций при горении
- •1.4. Основные процессы, происходящие при горении.
- •1.5. Опасные факторы пожара и их воздействие на человека
- •Материальный баланс процессов горения
- •Тема 2. Пожарная опасность неорганических веществ
- •2.1. Пожарная опасность металлов
- •Образуют водород
- •2.2.2. VII группа (подгруппа VII а) Галогены (солероды)
- •2.2.3. VI группа (подгруппа VI а) Кислород и халькогены (рождающие медь)
- •2.2.4. V группа (подгруппа V а) Подгруппа азота
- •2.2.5. IV группа (подгруппа IV а) Подгруппа углерода
- •2.2.6. III группа (подгруппа III а) Подгруппа алюминия
- •2.2.7. II группа (подгруппа II а) Щелочноземельные металлы
- •2.2.8. VIII группа (подгруппа VIII а) Инертные газы
- •2.2.9. Водород
- •2.3. Классификация горючих веществ и материалов.
- •2.3.1. Окислители.
- •Тема 3. Пожароопасные свойства углеводородов
- •3.1. Ациклические предельные углеводороды (алканы)
- •1. Основные реакции алканов – реакции замещения водорода, идущие по свободно-радикальному механизму.
- •3.2. Ациклические непредельные углеводороды
- •Непредельные углеводороды
- •3.3. Галогенпроизводные углеводородов
- •3.4. Насыщенные циклические соединения (циклоалканы)
- •3.5. Ароматические углеводороды (арены)
- •3.5.1. Конденсированные циклические системы
- •Тема 4. Пожароопасные свойства кислородсодержащих органических соединений
- •4.1. Спирты
- •Классификация спиртов
- •4.1.1. Предельные одноатомные спирты
- •4.1.2. Многоатомные спирты
- •4.1.3. Фенолы
- •4.2. Простые эфиры спиртов
- •4.3. Органические перекисные соединения
- •4.4. Альдегиды и кетоны
- •4.5. Карбоновые кислоты
- •Классификация карбоновых кислот
- •4.5.1. Предельные одноосновные карбоновые кислоты
- •4.5.2. Непредельные карбоновые кислоты
- •4.5.3. Высшие жирные кислоты
- •4.5.4. Мыла
- •4.6. Сложные эфиры
- •4.6.1. Жиры
- •4.6.2. Воски
- •Тема 5. Органические соединения, содержащие серу и азот
- •5.1. Сероорганические соединения
- •5.1.1. Тиолы
- •5.1.2. Органические сульфиды
- •5.1.3. Эфиры серной кислоты
- •5.2. Азотсодержащие органические соединения
- •5.2.1. Амины
- •Первичные алифатические амины
- •Вторичные алифатические амины
- •Первичные ароматические амины
- •Химические свойства солей диазония
- •5.2.2. Цвет и строение вещества
- •5.2.3. Нитросоединения
- •Тема 6. Полимеры и полимерные материалы
- •Классификация полимеров
- •Отличительные особенности полимеров
- •6.1. Способы получения полимеров
- •6.1.1. Реакции полимеризации
- •6.1.2. Реакции поликонденсации
- •6.2. Деструкция полимеров
- •6Редельно допустимые концентрации в воздухе
- •6.3. Факторы, влияющие на термостойкость полимеров
- •6.4. Полимерные материалы
- •6.4.1. Каучуки
- •6.4.2. Пластмассы
- •6.4.3. Химические волокна
- •Тема 7. Химия огнетушащих веществ
- •7.1. Способы прекращения горения
- •Отв и способы прекращения горения
- •Применение отв для тушения пожаров различных классов
- •7. 2. Вода как отв
- •Преимущества воды как отв
- •1. Дешевизна, доступность, простота: применения, хранения, транспортировки, подачи.
- •Недостатки воды как отв
- •1. Высокая температура замерзания.
- •Если угол не устанавливается, то смачивание полное, капля тонкой пленкой растекается по поверхности твердого тела.
- •Пути повышения эффективности воды как отв
- •7.3. Пены как отв
- •7.3.1. Общая характеристика пенообразователей
- •Классификация пенообразователей по составу и назначению
- •7.3.4. Пенообразователи целевого назначения
- •7.4. Негорючие газы как отв
- •7.5. Ингибиторы горения
- •7.5.1. Хладоны как отв
- •7.5.2. Тушение порошковыми составами
- •Литература
- •Нормативные правовые акты*
4.5.2. Непредельные карбоновые кислоты
Непредельные карбоновые кислоты содержат ненасыщенный углеводородный радикал, связанный с карбоксильной группой. В молекуле ненасыщенных карбоновых кислот могут содержаться одна, две и более двойных или тройных связей, а также их комбинации.
Простейший представитель ненасыщенных карбоновых кислот – акриловая кислота, которая соответствует непредельному альдегиду акролеину:
СН2= СН – С = ОСН2= СН – С = О
Н ОН
акролеин акриловая кислота
(пропеналь) (пропеновая кислота)
СН2= СН – СН2– С = О СН2= С – С = О СН2– СН = СН – С = О
ОН СН3ОН ОН
винилуксусная кислота метакриловая кислота кротоновая кислота
(3-бутеновая) (2-метилпропеновая) (2-бутеновая)
Химические свойства непредельных карбоновых кислот обусловлены как наличием карбоксильной группы, так и присутствием кратных (двойных и тройных) связей.
Как кислоты они способны образовывать соли, как непредельные соединения вступать в реакции присоединения (гидрирования, галогенирования) и полимеризации.
4.5.3. Высшие жирные кислоты
По количеству углеродных атомов в радикале различают кислоты низшие (низкомолекулярные) и высшие (высокомолекулярные), содержащие более 10 атомов углерода.
Высшие кислоты входят в состав жиров (липидов) и поэтому носят название “жирные кислоты” (ВЖК).
Наиболее известными карбоновыми кислотами, которые входят в состав жиров, являются:
\ \ С3Н7СООН масляная кислота (низшая кислота)
СООН
\ \ \ \ \ \ \ С13Н27СООН миристиновая кислота
СООН
\ \ \ \ \ \ \ \ С15Н31СООН пальмитиновая кислота
СООН
\ \ \ \ \ \ \ \ \ С17Н35СООН стеариновая кислота
СООН
\ \ \ \ \ \ \ \ \ \ С19Н39СООН арахиновая кислота
СООН
\ \ \ \ \ \ \ \ \ \ \ \ С23Н47СООН лингоцериновая кислота
СООН
\ \ \ \\ \ \ \ С15Н29СООН пальмитоолеиновая кислота
СООН
\ \ \ \ \\ \ \ \ \ С17Н33СООН олеиновая кислота
СООН
\ \ \ \ \\ \ \ \ \ С17Н31СООН линолевая кислота
СООН
\ \ \ \ \\ \ \ \\ \ С17Н29СООН линоленовая кислота
СООН
Нетрудно заметить, что эти жирные кислоты (а их еще называют незаменимые жирные кислоты) имеют неразветвленную цепочку с четным числом атомов углерода, что объясняется особенностями их биосинтеза, который происходит из остатков уксусной кислоты (С2).
ВЖК – в основном бесцветные, твердые вещества без вкуса и запаха. В воде они не растворяются, но хорошо растворяются в органических растворителях.
Смесь пальмитиновой и стеариновой кислоты называют “стеарином”.
ВЖК также растворимы в водных концентрированных растворах щелочей, при этом образуются соли ВЖК – мыла.
Высшие жирные кислоты применяются в производстве синтетических моющих средств, синтетического каучука, линолеума, лакокрасочных изделий, в качестве гидрофобизирующих веществ для обработки строительных материалов.