
- •Методичні розробки
- •Частина 1
- •Ужгород – 2002
- •Передмова
- •Техніка експерименту в хімічній лабораторії
- •Загальні правила роботи в хімічній лабораторії
- •Предмет
- •Атомно-молекулярна теорія
- •Основні
- •Поняття
- •Прості та складні речовини
- •Хімічна символіка
- •Фізичні величини
- •Закон збереження маси
- •Закон еквівалентів
- •Закон сталості складу речовини
- •Закон кратних відношень
- •Газові закони
- •Закон Авогадро
- •Рівняння Менделєєва-Клапейрона
- •Хімічна термодинаміка
- •Термодинамічна система
- •Внутрішня енергія системи
- •Перший закон термодинаміки
- •Ентальпія системи
- •Тепловий ефект реакції
- •Закони термохімії
- •Термохімічні рівняння реакцій
- •Стандартний стан речовини
- •Термохімічні розрахунки
- •Поняття про ентропію
- •Другий закон термодинаміки
- •Хімічна кінетика
- •Поняття про швидкість хімічної реакції
- •Швидкість гомогенних реакцій
- •Швидкість гетерогенних реакцій
- •Залежність швидкості хімічної реакції від температури
- •Енергія активації хімічної реакції
- •Фотохімічні реакції
- •Ланцюгові реакції
- •З розгалуженими ланцюгами
- •Оборотні та необоротні реакції
- •Хімічна рівновага
- •Зміщення хімічної рівноваги
- •Фазові рівноваги
- •Каталіз
- •Розчини
- •Дисперсні системи
- •Розчини
- •Теорії розчинів
- •Розчинність речовин
- •Розчини
- •Розчини
- •Розчини твердих речовин
- •Способи вираження концентрації розчинів
- •Розчини неелетролітів
- •Тиск пари розчинів
- •Температура кипіння і температура замерзання розчинів
- •Розчини електролітів
- •Теорія електролітичної дисоціації
- •Ступінь електролітичної дисоціації
- •Ізотонічний коефіцієнт
- •Константа електролітичної дисоціації
- •Закон розведення
- •Властивості розчинів сильних електролітів
- •Добуток розчинності
- •Іонний добуток води
- •Водневий показник
- •Буферні розчини
- •Індикатори
- •Реакції у розчинах електролітів
- •Гідроліз солей
- •Ступінь гідролізу солі
- •Колоїдні розчини
- •Будова колоїдних часток
- •Окисно-відновні процеси електрохімічні процеси корозія
- •Ступінь окиснення елементу
- •Поняття про окисно-відновні реакції
- •Окисно-відновні властивості речовин
- •Класифікація окисно-відновних реакцій
- •Методи складання рівнянь окисно-відновних реакцій
- •У кислому середовищі:
- •У нейтральному середовищі:
- •В лужному середовищі:
- •Окисно–відновний потенціал
- •Еквівалент окисника і відновника
- •Електродний потенціал
- •Електричного шару
- •Гальванічний елемент
- •Стандартний електродний потенціал
- •Водневий електрод
- •Ряд стандартних електродних потенціалів металів
- •Електроди першого роду
- •Електроди другого роду
- •Окисно-відновні електроди
- •Іонселективні електроди
- •Електроліз
- •Корозія
- •Електрохімічна корозія
- •Захист металів від корозії
- •Загальні властивості полімерів
- •Полімери як високомолекулярні речовини
- •Структура полімерів
- •Реакція полімеризації
- •Механізми полімеризації
- •Властивості полімерів
- •Каучуки
- •Структура каучуків
- •Синтетичні каучуки
- •Вулканізація каучуків
- •Реакція поліконденсації
- •Пластмаси
- •Література для самостійної роботи студентів
хімії
Предмет
Відомі дві форми існування матерії: речовина і поле. Речовина – матеріальне утворення, що складається із елементарних часток, які мають власну масу (масу спокою). На відміну від речовини, поле – матеріальне середовище, в якому відбувається взаємодія часток, які не мають маси спокою. Поле не є безпосереднім об’єктом вивчення в хімії і проявляється перш за все енергетичними характеристиками.
У визначенні хімії підкреслюється взаємозв’язок хімічної і інших форм руху матерії. Рух є спосіб існування матерії, її корінна і невід’ємна властивість. Специфіка хімічної форми руху матерії – зміна складу речовини. Хімічні процеси утворення і руйнування речовини завжди супроводжуються зміною їх складу і структури. Різні форми руху матерії взаємопов’язані. Добре відомі приклади тісного зв’язку між різними формами руху матерії, наприклад хімічної, біологічної та фізичної: в останні роки сильного розвитку зазнала молекулярна біологія, спостерігається бурхливий розвиток біохімії, біоорганічної, біонеорганічної, біофізичної хімії. Процес взаємопроникнення різних природничих наук – об’єктивний наслідок існуючого в природі загального взаємозв’язку різних форм руху матерії.
Неорганічна хімія займається вивченням елементів періодичної системи та утворених з атомів елементів простих і складних речовин. Загальна хімія займається розробкою теоретичних уявлень і концепцій про склад і будову речовин, про загальні закономірності перебігу хімічних процесів, що є фундаментом всієї системи хімічних знань. Неорганічна хімія на сучасному етапі успішно вирішує завдання по створенню нових неорганічних речовин із заданими властивостями.
Основний експериментальний метод хімії – метод проведення хімічних реакцій. Хімічні реакції – це процес перетворення одних речовин (вихідних) в інші (продукти реакції); продукти хімічної реакції мають склад, а відповідно будову і властивості, відмінні від вихідних.
Аналітична хімія використовує хімічні реакції для встановлення якісного і кількісного складу речовин. На основі хімічних реакцій здійснюється неорганічний синтез.
До числа фундаментальних узагальнень хімії входять атомно-молекулярна теорія, стехіометричні закони, Періодичний закон і теорія хімічної будови.
Атомно-молекулярна теорія
Основні положення атомно-молекулярного вчення:
Речовини мають дискретну будову. Вони складаються з часток (структурних елементів речовин) – молекул, атомів або іонів.
Частки речовин (молекули, атоми або інші) безперервно безладно рухаються.
Між складовими частками речовини є відстані.
Між складовими частками речовин діють сили взаємного притягання і відштовхування.
Молекули складаються з атомів.
Молекули зберігаються під час фізичних явищ і руйнуються під час хімічних явищ (при хімічних реакціях).
Під час хімічних реакцій атоми зберігаються – при цьому відбувається їх перегрупування, що приводить до утворення нових речовин.
Різноманітність речовин зумовлена різним порядком сполучення атомів.