
- •Методичні розробки
- •Частина 1
- •Ужгород – 2002
- •Передмова
- •Техніка експерименту в хімічній лабораторії
- •Загальні правила роботи в хімічній лабораторії
- •Предмет
- •Атомно-молекулярна теорія
- •Основні
- •Поняття
- •Прості та складні речовини
- •Хімічна символіка
- •Фізичні величини
- •Закон збереження маси
- •Закон еквівалентів
- •Закон сталості складу речовини
- •Закон кратних відношень
- •Газові закони
- •Закон Авогадро
- •Рівняння Менделєєва-Клапейрона
- •Хімічна термодинаміка
- •Термодинамічна система
- •Внутрішня енергія системи
- •Перший закон термодинаміки
- •Ентальпія системи
- •Тепловий ефект реакції
- •Закони термохімії
- •Термохімічні рівняння реакцій
- •Стандартний стан речовини
- •Термохімічні розрахунки
- •Поняття про ентропію
- •Другий закон термодинаміки
- •Хімічна кінетика
- •Поняття про швидкість хімічної реакції
- •Швидкість гомогенних реакцій
- •Швидкість гетерогенних реакцій
- •Залежність швидкості хімічної реакції від температури
- •Енергія активації хімічної реакції
- •Фотохімічні реакції
- •Ланцюгові реакції
- •З розгалуженими ланцюгами
- •Оборотні та необоротні реакції
- •Хімічна рівновага
- •Зміщення хімічної рівноваги
- •Фазові рівноваги
- •Каталіз
- •Розчини
- •Дисперсні системи
- •Розчини
- •Теорії розчинів
- •Розчинність речовин
- •Розчини
- •Розчини
- •Розчини твердих речовин
- •Способи вираження концентрації розчинів
- •Розчини неелетролітів
- •Тиск пари розчинів
- •Температура кипіння і температура замерзання розчинів
- •Розчини електролітів
- •Теорія електролітичної дисоціації
- •Ступінь електролітичної дисоціації
- •Ізотонічний коефіцієнт
- •Константа електролітичної дисоціації
- •Закон розведення
- •Властивості розчинів сильних електролітів
- •Добуток розчинності
- •Іонний добуток води
- •Водневий показник
- •Буферні розчини
- •Індикатори
- •Реакції у розчинах електролітів
- •Гідроліз солей
- •Ступінь гідролізу солі
- •Колоїдні розчини
- •Будова колоїдних часток
- •Окисно-відновні процеси електрохімічні процеси корозія
- •Ступінь окиснення елементу
- •Поняття про окисно-відновні реакції
- •Окисно-відновні властивості речовин
- •Класифікація окисно-відновних реакцій
- •Методи складання рівнянь окисно-відновних реакцій
- •У кислому середовищі:
- •У нейтральному середовищі:
- •В лужному середовищі:
- •Окисно–відновний потенціал
- •Еквівалент окисника і відновника
- •Електродний потенціал
- •Електричного шару
- •Гальванічний елемент
- •Стандартний електродний потенціал
- •Водневий електрод
- •Ряд стандартних електродних потенціалів металів
- •Електроди першого роду
- •Електроди другого роду
- •Окисно-відновні електроди
- •Іонселективні електроди
- •Електроліз
- •Корозія
- •Електрохімічна корозія
- •Захист металів від корозії
- •Загальні властивості полімерів
- •Полімери як високомолекулярні речовини
- •Структура полімерів
- •Реакція полімеризації
- •Механізми полімеризації
- •Властивості полімерів
- •Каучуки
- •Структура каучуків
- •Синтетичні каучуки
- •Вулканізація каучуків
- •Реакція поліконденсації
- •Пластмаси
- •Література для самостійної роботи студентів
Перший закон термодинаміки
Теплота є мірою енергії, що передається від одного тіла до іншого за рахунок різниці температур цих тіл. Переносу речовини при цьому не відбувається. Робота є мірою енергії, що передається від одного тіла до іншого за рахунок переміщення мас під дією яких-небудь сил.
У хімічній термодинаміці додатними вважають теплоту, яку підводять до системи, і роботу, яку здійснює система проти зовнішніх сил. Теплота і робота не є функціями стану системи і мають значення тільки в процесі переходу системи з одного стану в інший. Теплота і робота є функціями шляху переходу.
Перший закон термодинаміки: Теплота, підведена до системи, витрачається на збільшення її внутрішньої енергії чи здійснення системою роботи над зовнішнім середовищем: Q = U+А (1). Оскільки величини Q і А піддаються безпосередньому вимірюванню, то з допомогою рівняння (1) можна розрахувати значення U.
Ентальпія системи
Якщо при проходженні того чи іншого процесу робота розширення є єдиним видом роботи, то рівняння 2 матиме вигляд А = рV (3). Тоді QР = U+рV (4), де QР – теплота, підведена до системи при сталому тиску. З врахуванням того, що U = U2–U1 і V = р(V2–V1), рівняння (4) можна записати так: QР = U2–U1+р(V2–V1) = (U2+рV2)–(U1+рV1) (5). Суму (U+рV) називають ентальпією системи і позначають буквою Н. Н = U+рV (6), тоді QР = Н2–Н1 = Н, тобто теплота, підведена до системи при постійному тиску, витрачається на приріст ентальпії системи. Як і для внутрішньої енергії, абсолютне значення ентальпії визначити експериментально неможливо, але можна, вимірявши QР, знайти зміну ентальпії Н при переході системи з одного стану в інший. Оскільки значення Н визначається різницею (Н2–Н1) і не залежить від шляху і способу проведення процесу, ентальпію, як і внутрішню енергію, відносять до термодинамічних функцій стану системи.
Поряд з внутрішньою енергією U та ентальпією Н до термодинамічних функцій стану системи відносять ентропію (S), енергію Гіббса (G) та енергію Гельмгольца (F).
Якщо хімічна реакція відбувається в автоклаві (ізохоричний процес, V = сonst), і система не виконує роботи, в тому числі і роботи розширення, тобто V = 0, то вся підведена до системи теплота витрачається на приріст її внутрішньої енергії: QV = U (7).
Тепловий ефект реакції
Якщо реакція проходить в ізохорно-ізотермічних умовах і при цьому не здійснюється робота (А = 0), то тепловий ефект реакції дорівнює зміні внутрішньої енергії системи, і, відповідно, не залежить від шляху процесу: QР,Т = U = U2–U1 (8), де U2 – внутрішня енергія продуктів реакції; U1 – внутрішня енергія вихідних речовин. Якщо реакція проходить в ізобарно-ізотермічних умовах і при цьому виконується тільки робота розширення, то тепловий ефект реакції дорівнює зміні ентальпії системи, і, відповідно, не залежить від шляху процесу: QР,Т = Н = Н2–Н1, де Н2 – ентальпія продуктів реакції; Н1 – ентальпія вихідних речовин