
- •Основы теории электропривода введение
- •Тема лекции 1 Основные понятияэлектропривода план лекции
- •1.1. Структурная схема электропривода
- •2. Классификация электроприводов
- •Тема лекции 2 Силы и моменты, действующие в системе электропривода план лекции
- •Виды статических моментов (активный и реактивный)
- •Приведение статических моментов к валу электродвигателя
- •Расчёт мощности электродвигателя упрощенного электропривода лебёдки
- •Приведение моментов инерции к одной оси вращения
- •Приведение масс, движущихся поступательно, к валу двигателя
- •Тема лекции 3
- •Уравнение движения электропривода
- •Время пуска двигателя в холостом режиме и под нагрузкой
- •Пуск двигателя в холостом режиме
- •Пуск двигателя под нагрузкой
- •Время торможения и изменения скорости электропривода Разгон двигателя от скорости до
- •Свободный выбег
- •Время торможения электропривода
- •Время изменения скорости электропривода
- •Путь рабочего органа за время пуска и торможения
- •Тема лекции 4 Механические характеристики исполнительных механизмов. Установившиеся режимы план лекции
- •Момент и мощность вращательного движения
- •Изображение характеристики механизмов в теории электропривода
- •Различают два основных вида механических характеристик судовых исполнительных механизмов:
- •Статические моменты судовых механизмов
- •Изображение характеристик исполнительного механизма при работе в электроприводе с разными двигателями
- •Режими роботи електродвигунів у квадрантах системи координат кутова швидкість - момент ω (m)
- •Тема лекции 5 Передача механической энергии при подъёме и спуске груза план лекции
- •Подъем груза
- •Тормозной режим (спуск груза)
- •Построение нагрузочных диаграмм
- •Сопоставление формул вращательного движения с формулами поступательного движения
- •Тема лекции 6
- •План лекции
- •Задачи выбора электродвигателя (эд)
- •Выбор рода тока и напряжения эд
- •Типы двигателей в зависимости от назначения
- •Выбор номинальной скорости эд
- •Выбор двигателя по мощности
- •Тема лекции 7 Нагревание и охлаждение электродвигателей план лекции
- •Классификация изоляции
- •Тепловой баланс и превышение температуры электродвигателей
- •Постоянные времени нагрева и охлаждения
- •План лекции
- •Международная система классификации режимов работы электродвигателей
- •Продолжительный режим s1
- •Кратковременный режим s2
- •Повторно–кратковременный режим s3
- •Условия выбора электродвигателей для судовых электроприводов
- •Расчет мощности и выбор электродвигателя для различных режимов работы
- •Номинальная мощность электродвигателя при длительной переменной нагрузке
- •Метод средних потерь
- •Метод эквивалентных величин (тока, момента, мощности)
- •Расчет мощности и выбор электродвигателя для повторно-кратковременного и кратковременного режимов работы
- •Расчет мощности и выбор электродвигателя для кратковременного режима
- •Тема лекции 10 Механические характеристики электродвигателей план лекции
- •1.Естественные и искусственные механические характеристики электродвигателей
- •Естественная механическая характеристика синхронного двигателя
- •Естественная механическая характеристика двигателя постоянного тока
- •Естественная механическая характеристика асинхронного двигателя
- •Тема лекции 11 Саморегулирование электродвигателей план лекции
- •Изменение скорости электродвигателей
- •Саморегулирование электродвигателей постоянного тока
- •Саморегулирование асинхронных двигателей (ад)
- •Равновесие моментов устанавливается при новом значении скорости вращения вала эд.
- •Процесс саморегулирования асинхронных двигателей при увеличении момента сопротивления механизма
- •Активная и реактивная составляющие тока в асинхронном двигателе
- •Тема лекции 12 Устойчивость работы электропривода план лекции
- •Статическая устойчивость электропривода
- •Влияние эксплуатационных характеристик электродвигателя на cтатическую устойчивость
- •Динамическая устойчивость электропривода
- •Влияние величины напряжения сети на устойчивость электропривода. Опрокидывание электродвигателя
- •Способы повышения динамической устойчивости саэп
- •Контрольные вопросы
- •Способы пуска, регулирования частоты вращенияи торможения электроприводов
- •Способы регулирования частоты вращения электродвигателей постоянного тока
- •2.1. Основные сведения
- •Электрическое торможение двигателей постоянного тока
- •3.1. Основные сведения
- •Динамическое торможение двигателя параллельного возбуждения
- •Рекуперативное торможение двигателя постоянного тока
- •Реверс двигателей постоянного тока
- •4.1. Основные сведения
- •4.2. Реверс изменением направления тока в обмотке якоря
- •Реверс изменением направления тока в параллельной обмотке возбуждения
- •Тема лекции 14
- •Прямой пуск короткозамкнутых асинхронных двигателей специального исполнения
- •Реостатный пуск двигателей с фазным ротором
- •Пускасинхронного двигателя при пониженном напряжении на обмотке статора
- •Введение сопротивления в цепь статора
- •Тема лекции 16 Способы регулирования частоты вращения 3-фазных асинхронных двигателей план лекции
- •Основные сведения
- •Регулирование скорости изменением числа пар полюсов обмотки статора. Принцип получения разного числа пар полюсов
- •Регулирование скорости асинхронного двигателя изменением числа пар полюсов путем переключения обмотки статора со «звезды» на «двойную звезду»
- •Расчёт момента и мощности при регулирование скорости переключением обмоток статора со звезды(y) на двойную звезду(yy)
- •Регулирование скорости асинхронного двигателя изменением числа пар полюсов путем переключения обмотки статора с «треугольника» на «двойную звезду»
- •Расчёт момента и мощности при регулирование скорости переключением обмоток статора с треугольника на двойную звезду(yy)
- •Регулирование скорости асинхронного двигателя изменением частоты тока статора
- •1.Статический момент не изменяется с изменением скорости
- •Статический момент нагрузки изменяется по квадратичному закону
- •§ 5.13. Системы частотного регулирования асинхронных двигателей
- •21.10.2010 18:37 Администратор
- •Тема лекции 17 Электрическое торможение асинхронных двигателей
- •3.1. Основные сведения
- •Рекуперативное торможение
- •Рекуперативное торможение при переходе с большей скорости на меньшую
- •Динамическое торможение асинхронных двигателей
- •Торможение асинхронных двигателей противовключением
- •Реверс 3-фазных асинхронных электродвигателей
- •Условия работы судового электрооборудования. Требования Правил Регистра к судовому электрооборудованию
- •Требования морских нормативных документов к конструкции судового электрооборудования
- •Основные сведения
- •Классификация судового оборудования в зависимости от климатических условий района плавания
- •Классификация электрооборудования в зависимости от места расположения на судне
- •Степень защищенности электрооборудования от попадания внутрь воды
- •Зависимость степени защищённости электрооборудования от типа судовых помещений
- •Классификация судового оборудования в зависимости от особых условий работы эксплуатации
- •Классификация судового электрооборудования в зависимости от способа монтажа электрических машин
- •Примеры условного обозначения форм конструктивного исполнения электрических машин
Статические моменты судовых механизмов
Статический момент (момент сопротивления) пропорционален частоте вращения (рис.4.2, кривая 2). В такой режим входит двигатель постоянного тока при динамическом торможении, когда якорь двигателя замкнут на резистор, а ток возбуждения не изменяется.
Статический момент (момент сопротивления) не зависит от частоты вращения (кривая 3). Характерно для подъемных кранов, лебедок, поршневых насосов при подъеме воды на постоянную высоту, транспортеров, конвееров с постоянной передвигаемой массой. Для пуска и ускорения таких механизмов двигатель должен развивать пусковой момент значительно больший их статического момента.
Данные
о статическом моменте (моменте
сопротивления)
механизма приводятся в технической
инструкции. Для некоторых механизмов
статический момент (момент
сопротивления)
зависит от траектории движения
исполнительного механизма (от угла
поворота). Например, в поршневом
компрессоре, ножницах для резки металла,
приводе рулевого устройства (Рис.4.3).
Рис
4.3 Механическая характеристика поршневого
компрессора. Статический момент
сопротивления
зависит от траектории движения
исполнительного механизма.
Иногда
статический моментизменяется из-за изменения свойств
обрабатываемого механизмами материала
(вещества). И закономерности изменения
момента сопротивление от скорости
нельзя выразить ни графически, ни
аналитически (например камнедробилки,
бетономешалки).
Для электродвигателей угловая скорость и элетромагнитный момент связаны одинаковой зависимостью и обуславливают друг друга.
Статические моменты судовых механизмов могут быть функциями различных величин и поэтому признаку делятся на пять классов.
Моменты,
не зависящие от параметров движения
= const
(для грузоподъемных механизмов).
Моменты, зависящие от скорости:
= f(ω) для электромеханических преобразователей. Центробежных насосов, вентеляторов.
Моменты, зависящие от пути (угла поворота)
=f(α). Для шпилей, брашпилей.
Моменты, зависящие от скорости и угла поворота.
=f(
). Для электромеханических рулевых устройств.
Моменты, зависящие от времени
= f (t). Для буксирных лебедок.
В общем случае статический момент механизма выражается уравнением,
+
(
)
(4-9)
где:
–начальный
статический момент, создаваемый трением.
–номинальный
момент нагрузки, соответствующий
номинальной
скорости
.
x – коэффициент нагрузки (выбирается в зависимости от характера нагрузки).
показатель
степени, определяющий характер зависимости
от
угловой
скорости
,(
1
<
< 2) выбирается от
1
до +2( для вентиляторов 2).
(4-10)
Изображение характеристик исполнительного механизма при работе в электроприводе с разными двигателями
Все электродвигатели обладают свойством саморегулирования (подробно свойство саморегулирования будет рассмотрено далее) и развивать момент равный моменту сопротивления механизма [гер 444].
Любой производственный механизм после включения электродвигателя, через некоторое время, входит в установившийся режим при этом скорость двигателя устанавливается постоянной.
Установившемуся
режиму соответствует равновесие
статического момента сопротивления
механизм –
и электромагнитного момента двигателя
–
при
определённой скорости,
т.е.
После достижения равновесия между моментами в электроприводе устанавливается постоянная или установившаяся скорость движения.
Значение
установившейся
скорости
легко определить графически, если
механическую характеристику
механизма (например вентилятора –
кривая 1 (рис 4.2) построить в осях
, вместо
(на графике
(
)
в
одном масштабе
(рис. 4.4).
На рисунке 4.4 приведены механические характеристики трёх видов двигателей (синхронного СД, асинхронного АД, двигателя постоянного тока ДПТ) и механизма с вентиляторной механической характеристикой . Точки пересечения характеристик (а, в, с) соответствуют установившемся скоростям валов двигателей и вентилятора при подключении вентилятора отдельно к каждому из двигателей.
Механическая
характеристика двигателя и механизма
позволяет определить скорость, момент,
мощность и диапазон
регулирования скорости D
=
, если её нужно регулировать двигателем.
Механическая характеристика необходима так же для определения времени перехода от одной скорости к другой, например, при пуске и остановке, так как от времени перехода зависит производительность и экономичность показателей всего устройства.
Рис.
4.4 Механические характеристики
Любые
изменения
нагрузки
рабочего механизма, включение или
выключение двигателя, подключение
резисторов в силовую цепь двигателя,
изменение напряжения и т.д. – все эти
изменения приводят к ускорению
или замедлению
скорости привода ипоявлению
динамического момента
,
которыйнагружает
либо разгружает
вал
электродвигателя
.
(4-11)
Что бы определить возможные перегрузки двигателя (по моменту и мощности) во времени нужно знать, как изменяется момент, и мощность двигателя во времени (в течение рабочего цикла), то есть иметь нагрузочную диаграмму элетропривода.