
- •Contents
- •Foreword to the First Edition
- •Preface to the Third Edition
- •Preface to the Second Edition
- •Preface to the First Edition
- •1 SIP and the Internet
- •1.1 Signaling Protocols
- •1.2 Internet Multimedia Protocol Stack
- •1.2.1 Physical Layer
- •1.2.2 Data/Link Layer
- •1.2.3 Network Layer
- •1.2.4 Transport Layer
- •1.2.5 Application Layer
- •1.2.6 Utility Applications
- •1.2.7 Multicast
- •1.3 Internet Names
- •1.4 URLs, URIs, and URNs
- •1.5 Domain Name Service
- •1.5.1 DNS Resource Records
- •1.5.2 Address Resource Records (A or AAAA)
- •1.5.3 Service Resource Records (SRV)
- •1.5.4 Naming Authority Pointer Resource Records (NAPTR)
- •1.5.5 DNS Resolvers
- •1.6 Global Open Standards
- •1.7 Internet Standards Process
- •1.8 A Brief History of SIP
- •1.9 Conclusion
- •References
- •2 Introduction to SIP
- •2.1 A Simple Session Establishment Example
- •2.2 SIP Call with a Proxy Server
- •2.3 SIP Registration Example
- •2.4 SIP Presence and Instant Message Example
- •2.5 Message Transport
- •2.5.1 UDP Transport
- •2.5.2 TCP Transport
- •2.5.3 TLS Transport
- •2.5.4 SCTP Transport
- •2.6 Transport Protocol Selection
- •2.7 Conclusion
- •2.8 Questions
- •References
- •3 SIP Clients and Servers
- •3.1 SIP User Agents
- •3.2 Presence Agents
- •3.3 Back-to-Back User Agents
- •3.4 SIP Gateways
- •3.5 SIP Servers
- •3.5.1 Proxy Servers
- •3.5.2 Redirect Servers
- •3.5.3 Registrar Servers
- •3.6 Uniform Resource Indicators
- •3.7 Acknowledgment of Messages
- •3.8 Reliability
- •3.9 Multicast Support
- •3.10 Conclusion
- •3.11 Questions
- •References
- •4 SIP Request Messages
- •4.1 Methods
- •4.1.1 INVITE
- •4.1.2 REGISTER
- •4.1.5 CANCEL
- •4.1.6 OPTIONS
- •4.1.7 SUBSCRIBE
- •4.1.8 NOTIFY
- •4.1.9 PUBLISH
- •4.1.10 REFER
- •4.1.11 MESSAGE
- •4.1.12 INFO
- •4.1.13 PRACK
- •4.1.14 UPDATE
- •4.2 URI and URL Schemes Used by SIP
- •4.2.1 SIP and SIPS URIs
- •4.2.2 Telephone URLs
- •4.2.3 Presence and Instant Messaging URLs
- •4.3 Tags
- •4.4 Message Bodies
- •4.5 Conclusion
- •4.6 Questions
- •References
- •5 SIP Response Messages
- •5.1 Informational
- •5.1.1 100 Trying
- •5.1.2 180 Ringing
- •5.1.3 181 Call is Being Forwarded
- •5.1.4 182 Call Queued
- •5.1.5 183 Session Progress
- •5.2 Success
- •5.2.2 202 Accepted
- •5.3 Redirection
- •5.3.1 300 Multiple Choices
- •5.3.2 301 Moved Permanently
- •5.3.3 302 Moved Temporarily
- •5.3.4 305 Use Proxy
- •5.3.5 380 Alternative Service
- •5.4 Client Error
- •5.4.1 400 Bad Request
- •5.4.2 401 Unauthorized
- •5.4.3 402 Payment Required
- •5.4.4 403 Forbidden
- •5.4.5 404 Not Found
- •5.4.6 405 Method Not Allowed
- •5.4.7 406 Not Acceptable
- •5.4.8 407 Proxy Authentication Required
- •5.4.9 408 Request Timeout
- •5.4.11 410 Gone
- •5.4.12 411 Length Required
- •5.4.13 412 Conditional Request Failed
- •5.4.14 413 Request Entity Too Large
- •5.4.15 414 Request-URI Too Long
- •5.4.16 415 Unsupported Media Type
- •5.4.17 416 Unsupported URI Scheme
- •5.4.18 417 Unknown Resource Priority
- •5.4.19 420 Bad Extension
- •5.4.20 421 Extension Required
- •5.4.21 422 Session Timer Interval Too Small
- •5.4.22 423 Interval Too Brief
- •5.4.23 428 Use Identity Header
- •5.4.24 429 Provide Referror Identity
- •5.4.25 430 Flow Failed
- •5.4.26 433 Anonymity Disallowed
- •5.4.27 436 Bad Identity-Info Header
- •5.4.29 438 Invalid Identity Header
- •5.4.30 439 First Hop Lacks Outbound Support
- •5.4.31 440 Max-Breadth Exceeded
- •5.4.32 470 Consent Needed
- •5.4.33 480 Temporarily Unavailable
- •5.4.34 481 Dialog/Transaction Does Not Exist
- •5.4.35 482 Loop Detected
- •5.4.36 483 Too Many Hops
- •5.4.37 484 Address Incomplete
- •5.4.38 485 Ambiguous
- •5.4.39 486 Busy Here
- •5.4.40 487 Request Terminated
- •5.4.41 488 Not Acceptable Here
- •5.4.42 489 Bad Event
- •5.4.43 491 Request Pending
- •5.4.44 493 Request Undecipherable
- •5.4.45 494 Security Agreement Required
- •5.5 Server Error
- •5.5.1 500 Server Internal Error
- •5.5.2 501 Not Implemented
- •5.5.3 502 Bad Gateway
- •5.5.4 503 Service Unavailable
- •5.5.5 504 Gateway Timeout
- •5.5.6 505 Version Not Supported
- •5.5.7 513 Message Too Large
- •5.5.8 580 Preconditions Failure
- •5.6 Global Error
- •5.6.1 600 Busy Everywhere
- •5.6.2 603 Decline
- •5.6.3 604 Does Not Exist Anywhere
- •5.6.4 606 Not Acceptable
- •5.7 Questions
- •References
- •6 SIP Header Fields
- •6.1 Request and Response Header Fields
- •6.1.1 Accept
- •6.1.2 Accept-Encoding
- •6.1.3 Accept-Language
- •6.1.4 Alert-Info
- •6.1.5 Allow
- •6.1.6 Allow-Events
- •6.1.7 Answer-Mode
- •6.1.8 Call-ID
- •6.1.9 Contact
- •6.1.10 CSeq
- •6.1.11 Date
- •6.1.12 Encryption
- •6.1.13 Expires
- •6.1.14 From
- •6.1.15 History Info
- •6.1.16 Organization
- •6.1.17 Path
- •6.1.19 Record-Route
- •6.1.20 Recv-Info
- •6.1.21 Refer-Sub
- •6.1.22 Retry-After
- •6.1.23 Subject
- •6.1.24 Supported
- •6.1.25 Timestamp
- •6.1.27 User-Agent
- •6.2 Request Header Fields
- •6.2.1 Accept-Contact
- •6.2.2 Authorization
- •6.2.3 Call-Info
- •6.2.4 Event
- •6.2.5 Hide
- •6.2.6 Identity
- •6.2.7 Identity-Info
- •6.2.8 In-Reply-To
- •6.2.9 Info-Package
- •6.2.10 Join
- •6.2.11 Priority
- •6.2.12 Privacy
- •6.2.13 Proxy-Authorization
- •6.2.14 Proxy-Require
- •6.2.15 P-OSP-Auth-Token
- •6.2.16 P-Asserted-Identity
- •6.2.17 P-Preferred-Identity
- •6.2.18 Max-Breadth
- •6.2.19 Max-Forwards
- •6.2.20 Reason
- •6.2.21 Refer-To
- •6.2.22 Referred-By
- •6.2.23 Reply-To
- •6.2.24 Replaces
- •6.2.25 Reject-Contact
- •6.2.26 Request-Disposition
- •6.2.27 Require
- •6.2.28 Resource-Priority
- •6.2.29 Response-Key
- •6.2.30 Route
- •6.2.31 RAck
- •6.2.32 Security-Client
- •6.2.33 Security-Verify
- •6.2.34 Session-Expires
- •6.2.35 SIP-If-Match
- •6.2.36 Subscription-State
- •6.2.37 Suppress-If-Match
- •6.2.38 Target-Dialog
- •6.2.39 Trigger-Consent
- •6.3 Response Header Fields
- •6.3.1 Accept-Resource-Priority
- •6.3.2 Authentication-Info
- •6.3.3 Error-Info
- •6.3.4 Flow-Timer
- •6.3.5 Min-Expires
- •6.3.7 Permission-Missing
- •6.3.8 Proxy-Authenticate
- •6.3.9 Security-Server
- •6.3.10 Server
- •6.3.11 Service-Route
- •6.3.12 SIP-ETag
- •6.3.13 Unsupported
- •6.3.14 Warning
- •6.3.15 WWW-Authenticate
- •6.3.16 RSeq
- •6.4 Message Body Header Fields
- •6.4.1 Content-Encoding
- •6.4.2 Content-Disposition
- •6.4.3 Content-Language
- •6.4.4 Content-Length
- •6.4.5 Content-Type
- •6.4.6 MIME-Version
- •6.5 Questions
- •References
- •7 Wireless, Mobility, and IMS
- •7.1 IP Mobility
- •7.2 SIP Mobility
- •7.4 IMS Header Fields
- •7.5 Conclusion
- •7.6 Questions
- •References
- •8 Presence and Instant Messaging
- •8.1 Introduction
- •8.2 History of IM and Presence
- •8.3 SIMPLE
- •8.4 Presence with SIMPLE
- •8.4.1 SIP Events Framework
- •8.4.2 Presence Bodies
- •8.4.3 Resource Lists
- •8.4.4 Filtering
- •8.4.6 Partial Publication
- •8.4.7 Presence Documents Summary
- •8.5 Instant Messaging with SIMPLE
- •8.5.1 Page Mode Instant Messaging
- •8.5.4 Message Composition Indication
- •8.5.5 Multiple Recipient Messages
- •8.5.6 Session Mode Instant Messaging
- •8.6 Jabber
- •8.6.1 Standardization as Extensible Messaging and Presence Protocol
- •8.6.2 Interworking with SIMPLE
- •8.6.3 Jingle
- •8.6.4 Future Standardization of XMPP
- •8.7 Conclusion
- •8.8 Questions
- •References
- •9 Services in SIP
- •9.1 Gateway Services
- •9.2 SIP Trunking
- •9.3 SIP Service Examples
- •9.4 Voicemail
- •9.5 SIP Video
- •9.6 Facsimile
- •9.7 Conferencing
- •9.7.1 Focus
- •9.7.2 Mixer
- •9.8 Application Sequencing
- •9.9 Other SIP Service Architectures
- •9.9.1 Service Oriented Architecture
- •9.9.2 Servlets
- •9.9.3 Service Delivery Platform
- •9.10 Conclusion
- •9.11 Questions
- •References
- •10 Network Address Translation
- •10.1 Introduction to NAT
- •10.2 Advantages of NAT
- •10.3 Disadvantages of NAT
- •10.4 How NAT Works
- •10.5 Types of NAT
- •10.5.1 Endpoint Independent Mapping NAT
- •10.5.2 Address Dependent Mapping NAT
- •10.5.3 Address and Port Dependent Mapping NAT
- •10.5.4 Hairpinning Support
- •10.5.5 IP Address Pooling Options
- •10.5.6 Port Assignment Options
- •10.5.7 Mapping Refresh
- •10.5.8 Filtering Modes
- •10.6 NAT Mapping Examples
- •10.7 NATs and SIP
- •10.8 Properties of a Friendly NAT or How a NAT Should BEHAVE
- •10.9 STUN Protocol
- •10.10 UNSAF Requirements
- •10.11 SIP Problems with NAT
- •10.11.1 Symmetric SIP
- •10.11.2 Connection Reuse
- •10.11.3 SIP Outbound
- •10.12 Media NAT Traversal Solutions
- •10.12.1 Symmetric RTP
- •10.12.2 RTCP Attribute
- •10.12.3 Self-Fixing Approach
- •10.13 Hole Punching
- •10.14 TURN: Traversal Using Relays Around NAT
- •10.15 ICE: Interactive Connectivity Establishment
- •10.16 Conclusion
- •10.17 Questions
- •References
- •11 Related Protocols
- •11.1 PSTN Protocols
- •11.1.1 Circuit Associated Signaling
- •11.1.2 ISDN Signaling
- •11.1.3 ISUP Signaling
- •11.2 SIP for Telephones
- •11.3 Media Gateway Control Protocols
- •11.4.1 Introduction to H.323
- •11.4.2 Example of H.323
- •11.4.3 Versions
- •References
- •12 Media Transport
- •12.1 Real-Time Transport Protocol (RTP)
- •12.2 RTP Control Protocol (RTCP)
- •12.2.1 RTCP Reports
- •12.2.2 RTCP Extended Reports
- •12.3 Compression
- •12.4.1 Audio Codecs
- •12.4.2 Video Codecs
- •12.5 Conferencing
- •12.6 ToIP—Conversational Text
- •12.7 DTMF Transport
- •12.8 Questions
- •References
- •13 Negotiating Media Sessions
- •13.1 Session Description Protocol (SDP)
- •13.1.1 Protocol Version
- •13.1.2 Origin
- •13.1.3 Session Name and Information
- •13.1.5 E-Mail Address and Phone Number
- •13.1.6 Connection Data
- •13.1.7 Bandwidth
- •13.1.8 Time, Repeat Times, and Time Zones
- •13.1.9 Encryption Keys
- •13.1.10 Media Announcements
- •13.1.11 Attributes
- •13.2 SDP Extensions
- •13.3 The Offer Answer Model
- •13.3.1 Rules for Generating an Offer
- •13.3.2 Rules for Generating an Answer
- •13.3.3 Rules for Modifying a Session
- •13.3.4 Special Case—Call Hold
- •13.4 Static and Dynamic Payloads
- •13.5 SIP Offer Answer Exchanges
- •13.6 Conclusion
- •13.7 Questions
- •References
- •14 SIP Security
- •14.1 Basic Security Concepts
- •14.1.1 Encryption
- •14.1.2 Public Key Cryptography
- •14.1.4 Message Authentication
- •14.2 Threats
- •14.3 Security Protocols
- •14.3.1 IPSec
- •14.3.3 DNSSec
- •14.3.4 Secure MIME
- •14.4 SIP Security Model
- •14.4.1 SIP Digest Authentication
- •14.4.2 SIP Authentication Using TLS
- •14.4.3 Secure SIP
- •14.4.4 Identity
- •14.4.5 Enhanced SIP Identity
- •14.6 Media Security
- •14.6.1 Non-RTP Media
- •14.6.2 Secure RTP
- •14.6.3 Keying SRTP
- •14.6.4 Best Effort Encryption
- •14.6.5 ZRTP
- •14.7 Questions
- •References
- •15 Peer-to-Peer SIP
- •15.1 P2P Properties
- •15.2 P2P Properties of SIP
- •15.3 P2P Overlays
- •15.4 RELOAD
- •15.5 Host Identity Protocol
- •15.6 Conclusion
- •15.7 Questions
- •References
- •16 Call Flow Examples
- •16.1 SIP Call with Authentication, Proxies, and Record-Route
- •16.2 SIP Call with Stateless and Stateful Proxies with Called Party Busy
- •16.3 SIP to PSTN Call Through Gateways
- •16.4 PSTN to SIP Call Through a Gateway
- •16.5 Parallel Search
- •16.6 Call Setup with Two Proxies
- •16.7 SIP Presence and Instant Message Example
- •References
- •17 Future Directions
- •17.2 More Extensions
- •17.3 Better Identity
- •17.4 Interdomain SIP
- •17.5 Making Features Work Better
- •17.6 Emergency Calling
- •17.7 More SIP Trunking
- •17.9 Improved NAT Traversal
- •17.10 Security Deployment
- •17.11 Better Interoperability
- •References
- •A.1 ABNF Rules
- •A.2 Introduction to XML
- •References
- •About the Author
Network Address Translation |
249 |
• Detecting generic ALGs, which rewrite IP addresses.
This new usage defines a number of minor extensions to STUN and will shortly be standardized. Note that this usage of STUN has some limitations in that it can only characterize a NAT for a particular address at a particular time. Since a NAT can change its behavior for different addresses and at a later time, care must be taken in using the information derived from these tests.
10.10 UNSAF Requirements
With a number of peer-to-peer protocols such as SIP attempting to fix and work around NAT problems, the Internet Architecture Board (IAB) published RFC 3424 [11] setting the requirements and limitations on IETF solutions to deal with NAT. These approaches are known as Unilateral Self-Address Fixing or UNSAF approaches, the acronym being chosen to highlight the fact that these approaches could, if not done correctly, make the NAT problem worse. Each protocol that tries to work around NATs must clearly scope the problem and describe the exit strategy and transition plan. The approach must discuss specific issues that might make the approach “brittle” or likely to fail. The approach must also discuss known practical issues encountered with real NAT in deployments.
10.11 SIP Problems with NAT
Consider the typical example of a SIP UA behind a NAT trying to communicate with a SIP server outside the NAT. Since SIP has some client/server properties, some SIP operations will work as long as the requests are originated by the UA. Requests originated by the SIP server may be blocked by lack of mappings or filtering rules. One approach used in practice is to use frequent SIP registrations to create the mapping and then reuse the mapping for incoming requests to the UA. However, this approach doesn’t quite work without some SIP extensions as we shall see. Media negotiated using SIP offer answer is a big problem as the SDP offer and answer will contain private addresses and ports in the c= and m= lines. An example SIP message sent from behind a NAT is shown here:
INVITE sip:UserB@there.com SIP/2.0
Via: SIP/2.0/UDP 10.1.1.221:5060;branch=z9hG4bKhjh
From: TheBigGuy <sip:UserA@customer.com>;tag=343kdw2
To: TheLittleGuy <sip:UserB@there.com>
Max-Forwards: 70
Call-ID: 123456349fijoewr
CSeq: 1 INVITE
Subject: Wow! It Works...
Contact: <sip:UserA@10.1.1.221>
250 |
SIP: Understanding the Session Initiation Protocol |
Content-Type: application/sdp
Content-Length: ...
v=0
o=UserA 2890844526 2890844526 IN IP4 UserA.customer.coms=- t=0 0
c=IN IP4 10.1.1.221 m=audio 49170 RTP/AVP 0
a=rtpmap:0 PCMU/8000
There are three main problems with this message. The Via header field contains a private IP address (10.1.1.221) and the listening port (5060) may not have an active mapping or filter rule. The Contact URI is unroutable due to the private IP address. Finally, the SDP information in the c= and m= lines will not work behind the NAT.
Via already has a partial solution for the response routing. The use of the received parameter will record the mapped public IP address, which is then used for routing the response. However, this will only work for a port preservation NAT (which is not recommended NAT behavior). A normal NAT that also changes the port will not work. The Contact URI problem is even more serious. If the request is a REGISTER, the AOR binding will not work since the URI is unroutable. If the request is an INVITE, the ACK and all subsequent requests such as BYE will also fail to route.
There are three main solutions to these problems: symmetric SIP, connection reuse, and SIP outbound. Each of these will be discussed in the following sections.
10.11.1 Symmetric SIP
Symmetric SIP operation uses the rport extension defined in RFC 3581 [12]. Just as the received Via parameter saves the mapped address, the rport parameter saves the mapped port number for use in routing responses. A SIP UA indicates support for this extension by including the rport parameter (without the “=” and an address which is not known) in the SIP request. This tells the next hop proxy that the UA will be listening for the response on the same address and port number that the request was sent from, instead of the address and port listed in the Via. When the proxy receives the request, it stores the mapped port in the rport parameter and then uses this for routing any responses back. The use of rport is shown in Figure 10.1.
10.11.2 Connection Reuse
Connection reuse is a method in SIP to reuse existing TCP connections. It is defined in [13]. Once a connection is opened, UAs can reuse the connection for subsequent connections. If a NAT traversal approach such as ICE is used, con-