
- •Contents
- •Foreword to the First Edition
- •Preface to the Third Edition
- •Preface to the Second Edition
- •Preface to the First Edition
- •1 SIP and the Internet
- •1.1 Signaling Protocols
- •1.2 Internet Multimedia Protocol Stack
- •1.2.1 Physical Layer
- •1.2.2 Data/Link Layer
- •1.2.3 Network Layer
- •1.2.4 Transport Layer
- •1.2.5 Application Layer
- •1.2.6 Utility Applications
- •1.2.7 Multicast
- •1.3 Internet Names
- •1.4 URLs, URIs, and URNs
- •1.5 Domain Name Service
- •1.5.1 DNS Resource Records
- •1.5.2 Address Resource Records (A or AAAA)
- •1.5.3 Service Resource Records (SRV)
- •1.5.4 Naming Authority Pointer Resource Records (NAPTR)
- •1.5.5 DNS Resolvers
- •1.6 Global Open Standards
- •1.7 Internet Standards Process
- •1.8 A Brief History of SIP
- •1.9 Conclusion
- •References
- •2 Introduction to SIP
- •2.1 A Simple Session Establishment Example
- •2.2 SIP Call with a Proxy Server
- •2.3 SIP Registration Example
- •2.4 SIP Presence and Instant Message Example
- •2.5 Message Transport
- •2.5.1 UDP Transport
- •2.5.2 TCP Transport
- •2.5.3 TLS Transport
- •2.5.4 SCTP Transport
- •2.6 Transport Protocol Selection
- •2.7 Conclusion
- •2.8 Questions
- •References
- •3 SIP Clients and Servers
- •3.1 SIP User Agents
- •3.2 Presence Agents
- •3.3 Back-to-Back User Agents
- •3.4 SIP Gateways
- •3.5 SIP Servers
- •3.5.1 Proxy Servers
- •3.5.2 Redirect Servers
- •3.5.3 Registrar Servers
- •3.6 Uniform Resource Indicators
- •3.7 Acknowledgment of Messages
- •3.8 Reliability
- •3.9 Multicast Support
- •3.10 Conclusion
- •3.11 Questions
- •References
- •4 SIP Request Messages
- •4.1 Methods
- •4.1.1 INVITE
- •4.1.2 REGISTER
- •4.1.5 CANCEL
- •4.1.6 OPTIONS
- •4.1.7 SUBSCRIBE
- •4.1.8 NOTIFY
- •4.1.9 PUBLISH
- •4.1.10 REFER
- •4.1.11 MESSAGE
- •4.1.12 INFO
- •4.1.13 PRACK
- •4.1.14 UPDATE
- •4.2 URI and URL Schemes Used by SIP
- •4.2.1 SIP and SIPS URIs
- •4.2.2 Telephone URLs
- •4.2.3 Presence and Instant Messaging URLs
- •4.3 Tags
- •4.4 Message Bodies
- •4.5 Conclusion
- •4.6 Questions
- •References
- •5 SIP Response Messages
- •5.1 Informational
- •5.1.1 100 Trying
- •5.1.2 180 Ringing
- •5.1.3 181 Call is Being Forwarded
- •5.1.4 182 Call Queued
- •5.1.5 183 Session Progress
- •5.2 Success
- •5.2.2 202 Accepted
- •5.3 Redirection
- •5.3.1 300 Multiple Choices
- •5.3.2 301 Moved Permanently
- •5.3.3 302 Moved Temporarily
- •5.3.4 305 Use Proxy
- •5.3.5 380 Alternative Service
- •5.4 Client Error
- •5.4.1 400 Bad Request
- •5.4.2 401 Unauthorized
- •5.4.3 402 Payment Required
- •5.4.4 403 Forbidden
- •5.4.5 404 Not Found
- •5.4.6 405 Method Not Allowed
- •5.4.7 406 Not Acceptable
- •5.4.8 407 Proxy Authentication Required
- •5.4.9 408 Request Timeout
- •5.4.11 410 Gone
- •5.4.12 411 Length Required
- •5.4.13 412 Conditional Request Failed
- •5.4.14 413 Request Entity Too Large
- •5.4.15 414 Request-URI Too Long
- •5.4.16 415 Unsupported Media Type
- •5.4.17 416 Unsupported URI Scheme
- •5.4.18 417 Unknown Resource Priority
- •5.4.19 420 Bad Extension
- •5.4.20 421 Extension Required
- •5.4.21 422 Session Timer Interval Too Small
- •5.4.22 423 Interval Too Brief
- •5.4.23 428 Use Identity Header
- •5.4.24 429 Provide Referror Identity
- •5.4.25 430 Flow Failed
- •5.4.26 433 Anonymity Disallowed
- •5.4.27 436 Bad Identity-Info Header
- •5.4.29 438 Invalid Identity Header
- •5.4.30 439 First Hop Lacks Outbound Support
- •5.4.31 440 Max-Breadth Exceeded
- •5.4.32 470 Consent Needed
- •5.4.33 480 Temporarily Unavailable
- •5.4.34 481 Dialog/Transaction Does Not Exist
- •5.4.35 482 Loop Detected
- •5.4.36 483 Too Many Hops
- •5.4.37 484 Address Incomplete
- •5.4.38 485 Ambiguous
- •5.4.39 486 Busy Here
- •5.4.40 487 Request Terminated
- •5.4.41 488 Not Acceptable Here
- •5.4.42 489 Bad Event
- •5.4.43 491 Request Pending
- •5.4.44 493 Request Undecipherable
- •5.4.45 494 Security Agreement Required
- •5.5 Server Error
- •5.5.1 500 Server Internal Error
- •5.5.2 501 Not Implemented
- •5.5.3 502 Bad Gateway
- •5.5.4 503 Service Unavailable
- •5.5.5 504 Gateway Timeout
- •5.5.6 505 Version Not Supported
- •5.5.7 513 Message Too Large
- •5.5.8 580 Preconditions Failure
- •5.6 Global Error
- •5.6.1 600 Busy Everywhere
- •5.6.2 603 Decline
- •5.6.3 604 Does Not Exist Anywhere
- •5.6.4 606 Not Acceptable
- •5.7 Questions
- •References
- •6 SIP Header Fields
- •6.1 Request and Response Header Fields
- •6.1.1 Accept
- •6.1.2 Accept-Encoding
- •6.1.3 Accept-Language
- •6.1.4 Alert-Info
- •6.1.5 Allow
- •6.1.6 Allow-Events
- •6.1.7 Answer-Mode
- •6.1.8 Call-ID
- •6.1.9 Contact
- •6.1.10 CSeq
- •6.1.11 Date
- •6.1.12 Encryption
- •6.1.13 Expires
- •6.1.14 From
- •6.1.15 History Info
- •6.1.16 Organization
- •6.1.17 Path
- •6.1.19 Record-Route
- •6.1.20 Recv-Info
- •6.1.21 Refer-Sub
- •6.1.22 Retry-After
- •6.1.23 Subject
- •6.1.24 Supported
- •6.1.25 Timestamp
- •6.1.27 User-Agent
- •6.2 Request Header Fields
- •6.2.1 Accept-Contact
- •6.2.2 Authorization
- •6.2.3 Call-Info
- •6.2.4 Event
- •6.2.5 Hide
- •6.2.6 Identity
- •6.2.7 Identity-Info
- •6.2.8 In-Reply-To
- •6.2.9 Info-Package
- •6.2.10 Join
- •6.2.11 Priority
- •6.2.12 Privacy
- •6.2.13 Proxy-Authorization
- •6.2.14 Proxy-Require
- •6.2.15 P-OSP-Auth-Token
- •6.2.16 P-Asserted-Identity
- •6.2.17 P-Preferred-Identity
- •6.2.18 Max-Breadth
- •6.2.19 Max-Forwards
- •6.2.20 Reason
- •6.2.21 Refer-To
- •6.2.22 Referred-By
- •6.2.23 Reply-To
- •6.2.24 Replaces
- •6.2.25 Reject-Contact
- •6.2.26 Request-Disposition
- •6.2.27 Require
- •6.2.28 Resource-Priority
- •6.2.29 Response-Key
- •6.2.30 Route
- •6.2.31 RAck
- •6.2.32 Security-Client
- •6.2.33 Security-Verify
- •6.2.34 Session-Expires
- •6.2.35 SIP-If-Match
- •6.2.36 Subscription-State
- •6.2.37 Suppress-If-Match
- •6.2.38 Target-Dialog
- •6.2.39 Trigger-Consent
- •6.3 Response Header Fields
- •6.3.1 Accept-Resource-Priority
- •6.3.2 Authentication-Info
- •6.3.3 Error-Info
- •6.3.4 Flow-Timer
- •6.3.5 Min-Expires
- •6.3.7 Permission-Missing
- •6.3.8 Proxy-Authenticate
- •6.3.9 Security-Server
- •6.3.10 Server
- •6.3.11 Service-Route
- •6.3.12 SIP-ETag
- •6.3.13 Unsupported
- •6.3.14 Warning
- •6.3.15 WWW-Authenticate
- •6.3.16 RSeq
- •6.4 Message Body Header Fields
- •6.4.1 Content-Encoding
- •6.4.2 Content-Disposition
- •6.4.3 Content-Language
- •6.4.4 Content-Length
- •6.4.5 Content-Type
- •6.4.6 MIME-Version
- •6.5 Questions
- •References
- •7 Wireless, Mobility, and IMS
- •7.1 IP Mobility
- •7.2 SIP Mobility
- •7.4 IMS Header Fields
- •7.5 Conclusion
- •7.6 Questions
- •References
- •8 Presence and Instant Messaging
- •8.1 Introduction
- •8.2 History of IM and Presence
- •8.3 SIMPLE
- •8.4 Presence with SIMPLE
- •8.4.1 SIP Events Framework
- •8.4.2 Presence Bodies
- •8.4.3 Resource Lists
- •8.4.4 Filtering
- •8.4.6 Partial Publication
- •8.4.7 Presence Documents Summary
- •8.5 Instant Messaging with SIMPLE
- •8.5.1 Page Mode Instant Messaging
- •8.5.4 Message Composition Indication
- •8.5.5 Multiple Recipient Messages
- •8.5.6 Session Mode Instant Messaging
- •8.6 Jabber
- •8.6.1 Standardization as Extensible Messaging and Presence Protocol
- •8.6.2 Interworking with SIMPLE
- •8.6.3 Jingle
- •8.6.4 Future Standardization of XMPP
- •8.7 Conclusion
- •8.8 Questions
- •References
- •9 Services in SIP
- •9.1 Gateway Services
- •9.2 SIP Trunking
- •9.3 SIP Service Examples
- •9.4 Voicemail
- •9.5 SIP Video
- •9.6 Facsimile
- •9.7 Conferencing
- •9.7.1 Focus
- •9.7.2 Mixer
- •9.8 Application Sequencing
- •9.9 Other SIP Service Architectures
- •9.9.1 Service Oriented Architecture
- •9.9.2 Servlets
- •9.9.3 Service Delivery Platform
- •9.10 Conclusion
- •9.11 Questions
- •References
- •10 Network Address Translation
- •10.1 Introduction to NAT
- •10.2 Advantages of NAT
- •10.3 Disadvantages of NAT
- •10.4 How NAT Works
- •10.5 Types of NAT
- •10.5.1 Endpoint Independent Mapping NAT
- •10.5.2 Address Dependent Mapping NAT
- •10.5.3 Address and Port Dependent Mapping NAT
- •10.5.4 Hairpinning Support
- •10.5.5 IP Address Pooling Options
- •10.5.6 Port Assignment Options
- •10.5.7 Mapping Refresh
- •10.5.8 Filtering Modes
- •10.6 NAT Mapping Examples
- •10.7 NATs and SIP
- •10.8 Properties of a Friendly NAT or How a NAT Should BEHAVE
- •10.9 STUN Protocol
- •10.10 UNSAF Requirements
- •10.11 SIP Problems with NAT
- •10.11.1 Symmetric SIP
- •10.11.2 Connection Reuse
- •10.11.3 SIP Outbound
- •10.12 Media NAT Traversal Solutions
- •10.12.1 Symmetric RTP
- •10.12.2 RTCP Attribute
- •10.12.3 Self-Fixing Approach
- •10.13 Hole Punching
- •10.14 TURN: Traversal Using Relays Around NAT
- •10.15 ICE: Interactive Connectivity Establishment
- •10.16 Conclusion
- •10.17 Questions
- •References
- •11 Related Protocols
- •11.1 PSTN Protocols
- •11.1.1 Circuit Associated Signaling
- •11.1.2 ISDN Signaling
- •11.1.3 ISUP Signaling
- •11.2 SIP for Telephones
- •11.3 Media Gateway Control Protocols
- •11.4.1 Introduction to H.323
- •11.4.2 Example of H.323
- •11.4.3 Versions
- •References
- •12 Media Transport
- •12.1 Real-Time Transport Protocol (RTP)
- •12.2 RTP Control Protocol (RTCP)
- •12.2.1 RTCP Reports
- •12.2.2 RTCP Extended Reports
- •12.3 Compression
- •12.4.1 Audio Codecs
- •12.4.2 Video Codecs
- •12.5 Conferencing
- •12.6 ToIP—Conversational Text
- •12.7 DTMF Transport
- •12.8 Questions
- •References
- •13 Negotiating Media Sessions
- •13.1 Session Description Protocol (SDP)
- •13.1.1 Protocol Version
- •13.1.2 Origin
- •13.1.3 Session Name and Information
- •13.1.5 E-Mail Address and Phone Number
- •13.1.6 Connection Data
- •13.1.7 Bandwidth
- •13.1.8 Time, Repeat Times, and Time Zones
- •13.1.9 Encryption Keys
- •13.1.10 Media Announcements
- •13.1.11 Attributes
- •13.2 SDP Extensions
- •13.3 The Offer Answer Model
- •13.3.1 Rules for Generating an Offer
- •13.3.2 Rules for Generating an Answer
- •13.3.3 Rules for Modifying a Session
- •13.3.4 Special Case—Call Hold
- •13.4 Static and Dynamic Payloads
- •13.5 SIP Offer Answer Exchanges
- •13.6 Conclusion
- •13.7 Questions
- •References
- •14 SIP Security
- •14.1 Basic Security Concepts
- •14.1.1 Encryption
- •14.1.2 Public Key Cryptography
- •14.1.4 Message Authentication
- •14.2 Threats
- •14.3 Security Protocols
- •14.3.1 IPSec
- •14.3.3 DNSSec
- •14.3.4 Secure MIME
- •14.4 SIP Security Model
- •14.4.1 SIP Digest Authentication
- •14.4.2 SIP Authentication Using TLS
- •14.4.3 Secure SIP
- •14.4.4 Identity
- •14.4.5 Enhanced SIP Identity
- •14.6 Media Security
- •14.6.1 Non-RTP Media
- •14.6.2 Secure RTP
- •14.6.3 Keying SRTP
- •14.6.4 Best Effort Encryption
- •14.6.5 ZRTP
- •14.7 Questions
- •References
- •15 Peer-to-Peer SIP
- •15.1 P2P Properties
- •15.2 P2P Properties of SIP
- •15.3 P2P Overlays
- •15.4 RELOAD
- •15.5 Host Identity Protocol
- •15.6 Conclusion
- •15.7 Questions
- •References
- •16 Call Flow Examples
- •16.1 SIP Call with Authentication, Proxies, and Record-Route
- •16.2 SIP Call with Stateless and Stateful Proxies with Called Party Busy
- •16.3 SIP to PSTN Call Through Gateways
- •16.4 PSTN to SIP Call Through a Gateway
- •16.5 Parallel Search
- •16.6 Call Setup with Two Proxies
- •16.7 SIP Presence and Instant Message Example
- •References
- •17 Future Directions
- •17.2 More Extensions
- •17.3 Better Identity
- •17.4 Interdomain SIP
- •17.5 Making Features Work Better
- •17.6 Emergency Calling
- •17.7 More SIP Trunking
- •17.9 Improved NAT Traversal
- •17.10 Security Deployment
- •17.11 Better Interoperability
- •References
- •A.1 ABNF Rules
- •A.2 Introduction to XML
- •References
- •About the Author

SIP Header Fields |
169 |
|
Table 6.20 |
|
Example of WWW-Authenticate Header Field |
Header Field |
Meaning |
WWW-Authenticate: Digest
realm=”example.com”,
nonce=”9c8e88df84f1cec4341ae6e5a359”, opaque=””, stale=FALSE, algorithm=MD5
HTTP digest challenge.
response, the UAC should acknowledge receipt of the response with a PRACK method, as described in Section 4.1.13. The RSeq header field contains a reliable sequence number that is an integer randomly initialized by the UAS. Each subsequent provisional response sent reliably for this dialog will have a monotonically increasing RSeq number. The UAS will retransmit a reliably sent response until a PRACK is received with a RAck containing the reliable sequence number and
CSeq.
An example is:
RSeq: 23452
6.4 Message Body Header Fields
These header fields contain information about the message body.
6.4.1Content-Encoding
The Content-Encoding header field is used to indicate that the listed encoding scheme has been applied to the message body. This allows the UAS to determine the decoding scheme necessary to interpret the message body. Multiple listings in this header field indicate that multiple encodings have been used in the sequence in which they are listed. Only encoding schemes listed in an Allow-Encoding header field may be used. The compact form is e. Examples include:
Content-Encoding: text/plain
e:gzip
6.4.2Content-Disposition
The Content-Disposition header field is used to describe the function of a message body. Defined values include session, icon, alert, and render. The value session indicates that the message body contains information to describe a media session. The value render indicates that the message body should be displayed or otherwise rendered for the user. If a message body is present in a request or a 2xx
170 |
SIP: Understanding the Session Initiation Protocol |
response without a Content-Disposition, the function is assumed to be session. For all other response classes with message bodies, the default function is render. An example is:
Content-Function: session
6.4.3Content-Language
The Content-Language header field [2] is used to indicate the language of a message body. It contains a language tag, which identifies the language.
Content-Language: en
6.4.4Content-Length
The Content-Length is used to indicate the number of octets in the message body. A Content-Length: 0 indicates no message body. As described in Section 2.4.2, this header field is used to separate multiple messages sent within a TCP stream. If not present in a UDP message, the message body is assumed to continue to the end of the datagram. If not present in a TCP message, the message body is assumed to continue until the connection is closed. The Content-Length octet count does not include the CRLF that separates the message header fields from the message body. It does, however, include the CRLF at the end of each line of the message body. An example octet calculation is in Chapter 2. The Content-Length header field is not a required header field to allow dynamically generated message bodies where the Content-Length may not be known a priori. The compact form is l. Examples include:
Content-Length: 0
l:287
6.4.5Content-Type
The Content-Type header field is used to specify the Internet media type [3] in the message body. Media types have the familiar form of type/sub-type. If this header field is not present, application/sdp is assumed. If an Accept header field was present in the request, the response Content-Type must contain a listed type, or a 415 Unsupported Media Type response must be returned. The compact form is c. Specific MIME types that are commonly used are listed in Table 6.21, and Tables 8.4 and 8.9 list common MIME types for presence and instant messaging.
Content indirection [50] can be used to provide a URI in place of an actual MIME message body. An example is: