
- •Вопрос 5
- •6.2-Й закон термодинамики. Энтропия. Направление протекания химической реакции.
- •7.Изменение изобарно-изотермического потенциала (энергия Гиббса). Расчет энергии Гиббса для стандартных условий. Уравнение Гиббса. Анализ уравнения Гиббса.
- •10. Каталитические процессы. Энергетические диаграммы каталитических процессов. Катализатор. Механизм действия катализатора.
- •15.Растворы электролитов. Катионы анионы.
- •16.Каков механизм диссоциации солей в растворах или расплавах
- •18.Слабые электролиты. Константа и степень диссоциации
- •19.Вода как слабый электролит.Индикаторы.
- •20.Сущность гидролиза солей.
- •21.Гидролиз солей.
- •22.Константа гидролиза
- •1.Природа соли
- •2. Концентрация соли
- •3. Температура
- •4. Присутствие одноименных ионов
- •23.Химическая связь в комплексных соединениях и их строение
- •24. Диссоциация комплексных соединений с комплексным анионом и комплексным катионом. Константа нестойкости комплексного иона. Номенклатура комплексных соединений. Двойные соли.
- •25. Окислительно-восстановительные реакции. Окисление. Восстановление. Правила расчета степени окисления. Высшая низшая и средняя степень окисления.
- •26.Важнейшие окислители. Важнейшие восстановители.
- •27.Классификация окислительно-восстановительных реакция (привести примеры, составить уравнения реакции)
- •29.1.Стандартный электродный потенциал металла (е0)
- •2.Ряд напряжений
- •31.Сущность коррозийных поцессов.
15.Растворы электролитов. Катионы анионы.
Электроли́т — вещество, которое проводит электрический ток вследствие диссоциации на ионы, что происходит врастворах и расплавах, или движения ионов в кристаллических решётках твёрдых электролитов. Примерами электролитов могут служить водные растворы кислот, солей и оснований и некоторые кристаллы (например, иодид серебра, диоксид циркония). Электролиты — проводники второго рода, вещества, электропроводность которых обусловлена подвижностью ионов.
Исходя из степени диссоциации все электролиты делятся на две группы
Сильные электролиты — электролиты, степень диссоциации которых в растворах равна единице (то есть диссоциируют полностью) и не зависит от концентрации раствора. Сюда относятся подавляющее большинство солей, щелочей, а также некоторые кислоты (сильные кислоты, такие как: HCl, HBr, HI, HNO3, H2SO4 ).
Слабые электролиты — степень диссоциации меньше единицы (то есть диссоциируют не полностью) и уменьшается с ростом концентрации. К ним относятводу, ряд кислот (слабые кислоты, такие как HF), основанияp-, d-, и f-элементов.
Между этими двумя группами чёткой границы нет, одно и то же вещество может в одном растворителе проявлять свойства сильного электролита, а в другом — слабого.
Изотонический коэффициент (также фактор Вант-Гоффа; обозначается i) — безразмерный параметр, характеризующий поведение вещества в растворе. Он численно равен отношению значения некоторого коллигативного свойства раствора данного вещества и значения того же коллигативного свойства неэлектролита той же концентрации при неизменных прочих параметрах системы.
.
Основные положения теории электролитической диссоциации
1. Электролиты при растворении в воде распадаются (диссоциируют) на ионы – положительные и отрицательные.
2. Под действием электрического тока ионы приобретают направленное движение: положительно заряженные частицы движутся к катоду, отрицательно заряженные – к аноду. Поэтому положительно заряженные частицы называются катионами, а отрицательно заряженные – анионами.
3. Направленное движение происходит в результате притяжения их противоположно заряженными электродами (катод заряжен отрицательно, а анод – положительно).
4. Ионизация – обратимый процесс: параллельно с распадом молекул на ионы (диссоциация) протекает процесс соединения ионов в молекулы (ассоциация).
Основываясь на теории электролитической диссоциации, можно дать следующие определения для основных классов соединений:
Кислотами называются электролиты, при диссоциации которых в качестве катионов образуются только ионы водорода. Например,
HCl
→ H+ +
Cl-;
CH3COOH H+ +
CH3COO-.
Основность кислоты определяется числом катионов водорода, которые образуются при диссоциации. Так, HCl, HNO3 – одноосновные кислоты, H2SO4, H2CO3 – двухосновные, H3PO4, H3AsO4 – трехосновные.
Основаниями называют электролиты, при диссоциации которых в качестве анионов образуются только гидроксид-ионы. Например,
KOH
→ K+ +
OH-,
NH4OH NH4+ +
OH-.
Растворимые в воде основания называются щелочами.
Кислотность основания определяется числом его гидроксильных групп. Например, KOH, NaOH – однокислотные основания, Ca(OH)2 – двухкислотное, Sn(OH)4 – четырехкислотное и т.д.
Солями называют электролиты, при диссоциации которых образуются катионы металлов (а также ион NH4+) и анионы кислотных остатков. Например,
CaCl2→ Ca2+ + 2Cl-, NaF → Na+ + F-.
Электролиты, при диссоциации которых одновременно, в зависимости от условий, могут образовываться и катионы водорода, и анионы – гидроксид-ионы называются амфотерными. Например,
H2O H+ +
OH-,
Zn(OH)2
Zn2+ +
2OH-,
Zn(OH)2
2H+ +
ZnO22- или
Zn(OH)2 +
2H2O
[Zn(OH)4]2- +
2H+.
,
Катио́н — положительно заряженный ион. Характеризуется величиной положительного электрического заряда: например, NH4+ — однозарядный катион, Ca2+
— двузарядный катион. В электрическом поле катионы перемещаются к отрицательному электроду — катод
Происходит от греческого καθιών «нисходящий, идущий вниз». Термин введен Майклом Фарадеем в 1834 году.
Анио́н — атом, или молекула, электрический заряд которой отрицателен, что обусловлено избытком электронов по сравнению с количеством положительныхэлементарных зарядов. Таким образом, анион — отрицательно заряженный ион. Заряд аниона дискретен и выражается в единицах элементарного отрицательного электрического заряда; например, Cl− — однозарядный анион, а остаток серной кислоты SO42− — двузарядный анион. Анионы имеются в растворах большинствасолей, кислот и оснований, в газах, например, H−, а также в кристаллических решётках соединений с ионной связью, например, в кристаллах поваренной соли, вионных жидкостях и в расплавах многих неорганических веществ.