РТ-2013 Физика и математика / mat_rt3_v1
.pdf
III этап, I вариант.
А1. Количество простых чисел на промежутке (1;9] равно:
1)1;
2)2;
3)3;
4)4;
5)5.
А2. Чем является отрезок CC1?
1)Высотой;
2)Апофемой;
3)Ребром;
4)Диагональю боковой грани;
5)Образующей.
А3. Какая из прямых отсутствует на рисунке?
1)y=2x+3;
2)y=2x-3;
3)y=-2x;
4)y=-2x-3;
5)y=-2x+3
A4. Вычислите:
1)-0,626;
2)-0,63;
3)-3/5;
4)-5/8;
5)1.
А5. В соревновании участвовали 150 девочек и 250 мальчиков. Какой процент составляют девочки?
1)37,5;
2)60;
3)40;
4)62,2;
5)15.
А6. На рисунке изображен угол АОМ и лучи ОВ и ОС. Известно, что величина угла АОВ вдвое больше величины угла СОМ. Если угол ВОС = 75 градусов, то градусная мера угла АОВ равна:
1)35;
2)70;
3)17;
4)45;
5)25.
А7. Образующая конуса равна 2, а высота равна длине радиуса основания. Найдите площадь боковой поверхности конуса.
1)
2) ;
3)
4)
5)
А8. Расположите в порядке возрастания числа.
А9. Укажите решение неравенства.
1)(-14;+ );
2)(- ;14);
3)(14;+ );
4)(- -14);
5)(-14;14).
А10. Представьте степень простым числом.
1)-10-2;
2)-10-4;
3)102;
4)104;
5)10-4.
А11. Вычислить:
1);
2);
3)3;
4)2;
5)1.
А12. В равнобокой трапеции боковая сторона равна средней линии, а периметр равен 36. Найдите длину средней линии трапеции.
А13. Сестра моложе брата на 3 года, а произведение их возрастов равно 180. Выберите уравнение, подходящее к условию.
1) ;
2)
3)
4)
5)
А14. Дана правильная треугольная призма ABCA1B1C1, у которой сторона основания равна 8. Найти площадь сечения призмы плоскостью, проходящей через сторону АВ под углом 30 градусов к основанию.
1);
2);
3);
4);
5).
А15. После упрощения выражение |
|
|
|
|
|
примет вид. |
|
|
|
1);
2);
3);
4);
5)0.
А16. Сумма наибольшего и наименьшего значения функции
1)
2)
3)
4) 1;
5)
А17. Решите уравнение
1)4;
2)-1;
3)2;
4)-2;
5)-4.
А18. Железная дорога за простой вагонов под разгрузкой в первый день берет 400$, а в каждый последующий на 300 больше, чем в предыдущий. Бригада грузчиков должна разгрузить вагоны за 10 дней. Если она разгрузит вагоны раньше срока, то получит премию 2350$ за каждый сэкономленный день. При каком сроке разгрузки вагонов (в днях) будут минимальными затраты предприятию по оплате простоя вагонов и выплате премии грузчикам?
1)4;
2)5;
3)6;
4)7;
5)8.
В1. Найдите наибольшее целое решение неравенства
(x-1)(x2+3x-4)<0.
B2. Найти произведение корней равенства
B3. Найти квадрат расстояния между точками, координаты которых удовлетворяют
системе уравнений
B4. Основание равнобедренного треугольника равно 6, а длина высоты, проведенной к основанию, равна длине отрезка, соединяющего середины основания и боковой стороны.
Найдите значение выражения |
, где S – площадь треугольника. |
B5. Найти количество корней уравнения 5-cos23x-5sin3x=0 на промежутке [-П;П].
B6. Путешественник предполагал пройти 30 км. с некоторой скоростью. Но с этой скоростью он шел всего 1 час, а затем стал проходить в час на 1 км. меньше. В результате он прибыл в конечный пункт на 48 мин. позднее, чем предполагал. С какой скоростью (км\ч) путешественник предполагал пройти путь?
В7. Найти произведение корней уравнения |10x-|x-8|-69|=11.
B8. 7 положительных чисел образуют геометрическую прогрессию. Произведение первых двух членов прогрессии равно 2048, а последних равно 2. Найти сумму семи членов прогрессии.
B9. Найти наименьшее целое решение 11x-3*133x+1<1692x+1
B10. Из точки М окружности радиуса 10 проведена касательная МА и секущая МВ, проходящая через центр окружности. Известно, что МВ = 3МА. Найдите расстояние s от точки М до центра окружности, в ответ запишите 2s.
B11. Найдите значение выражения |
|
. |
|
B12. Найдите сумму корней (корень, если он единственный) уравнения
