Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
181
Добавлен:
01.03.2016
Размер:
564.22 Кб
Скачать

2. Интеграл Лебега-Стилтьеса. Связь с интегралом Римана-Стилтьеса

Пусть задано измеримое пространство и заряд . Поскольку заряд можно представить в виде разности двух конечных мер и , то функция интегрируемая по каждой из мер будет интегрируема по заряду. Этот интеграл обладает всеми свойствами обычного интеграла Лебега.

Рассмотрим пример интеграла по заряду.

Пусть на отрезке задана неубывающая непрерывная слева функция g. Тогда эта функция на -алгебре множеств определяет конечную меру Лебега-Стилтьеса. Интеграл Лебега, построенный по этой мере, называют интегралом Лебега-Стилтьеса и обозначают

Рассмотрим частные случаи:

  1. Функция g – функция скачков (т.е. – дискретная мера), тогда

  2. Функция g – абсолютно непрерывна, тогда

т.е. обычный интеграл Лебега.

  1. Функция g, непрерывная слева на [a,b], функция с ограниченным изменением. Тогда ее можно представить в виде разности двух неубывающих функций непрерывных слева. Поэтому

Ясно, что это интеграл Лебега по заряду , построенному по функции с ограниченным изменением. В общем случае он не сводится к интегралу Лебега.

Помимо интеграла Лебега-Стилтьеса на прямой можно определить интеграл Римана-Стилтьеса. Он вводится как предел интегральных сумм, аналогичных обычным интегральным суммам Римана. Пусть f – произвольная функция на [a,b], g – непрерывная слева функция с ограниченным изменением.

Рассмотрим некоторое разбиение отрезка [a,b]:, выберем и составим интегральную сумму

Если эти интегральные суммы при имеют конечный предел, не зависящий от способа разбиения отрезка и от выбора точек , то этот предел называют интегралом Римана-Стилтьеса от функции f по функции g.

Теорема 3. Если функция f непрерывна на [a,b], то ее интеграл Римана-Стилтьеса существует и совпадает с соответствующим интегралом Лебега-Стилтьеса.

Основные свойства интеграла Римана-Стилтьеса.

  1. Теорема о среднем

  1. Если , то

  1. Если почти всюду, то

Теорема 4. Пусть функция непрерывна [a,b], а функция имеет на [a,b] всюду, кроме конечного числа точек интегрируемую производную . тогда существует интеграл Римана-Стилтьеса и выражается формулой:

Примеры решения задач

Задача 1. Пусть функция F(x) порождает меру Лебега-Стилтьеса на [ –2, 2 [. Доказать, что произвольная функция f (x) интегрируема на [–2, 2 [ относительно меры и

если F(x)=

Решение. Отметим, что все подмножества интервала [-2,2[ измеримы и поэтому каждая функция f(x), x  [-2,2[ измерима относительно меры . Представим полуинтервал [-2,2[ в виде объединения непересекающихся множеств [ –2, 2[ = [–2, –1[  {–1}  ]–1,1[  {1}  ]1,2[.

Множества [-2,1[, ]-1,1[, ]1,2[ имеют меру нуль, так как функция, порождающая меру , на этих множествах постоянна, а тогда каждая функция f (x) интегрируема и интеграл от неё равен нулю.

На множествах {-1} и {1} функция постоянна, а значит, простая. Поэтому

Следовательно, произвольная функция f (x) интегрируема на [-2,2[ и интеграл равен 2f (1)+f (–1). Данная функция будет интегрируема на всей числовой прямой, если

F(x)= тогда

Задача 2. Вычислить интеграл Римана-Стилтьеса

где F(x)=

Решение. Если функция f (x) непрерывна на [a, b], а функция F (x) имеет на [a, b] всюду, кроме конечного числа точек интегрируемую по Риману производную , то существует интеграл Римана-Стилтьеса и

Тогда

Задача 3. Пусть X=[0,1[, S={[a,b[X}, h(x) – некоторая неотрицательная интегрируемая по Риману на отрезке [0,1] функция; Вычислить

Решение. Построим последовательность простых интегрируемых функций, равномерно сходящуюся к Представим так, что По теореме о среднем для интеграла Римана такая, что , т.е. .

Положим для , тогда и равномерно сходится к т.к. при

есть интегральная сумма Римана, построенная для непрерывной функции на отрезке [0,1]. Так как при , , то

Итак,

Задача 4. Пусть на [0,3[ задана мера Лебега–Стилтьеса, порожденная функцией

F(x) =

Проверить, что F не убывает и непрерывна слева. Найти:

1) меру одноточечного множества;

2) промежутки, на которых эта мера совпадает с мерой Лебега;

3) промежутки,имеющие нулевую меру;

4) промежутки, на которых эта мера абсолютно непрерывна относительно меры Лебега;

5) найти меру канторова множества K и меру множества рациональных чисел на [0,3[.

Соседние файлы в папке Методическое пособие [В.В. Дайняк] (2012)