
- •Билет 1.
- •1. Активность, коэффициент активности и способы их определения. Ограниченная и полная взаимная растворимость компонентов в различных фазовых состояниях. Диаграммы состояния.
- •2. Соли. Соли кислородсодержащих и бескислородных кислот. Склонность элементов к вхождение в состав солей в катионной и анионной формах в зависимости от природы элемента и степени окисления.
- •3. Сложные эфиры. Реакции этерификации и гидролиза сложных эфиров, их механизм. Жиры, их состав. Гидрирование и гидролиз жиров.
- •Билет №2
- •1. Ковалентная связь. Квантово-химическая трактовка природы химических связей и строения молекулы. Химическая связь в молекуле водорода.
- •2. Хроматография. Принципы хроматографического разделения. Параметры хроматограмм. Газовая, жидкостная и сверхкритическая флюидная хроматография.
- •ГомоПк.
- •Билет №3.
- •1. Основные положения теорий валентных связей и молекулярных орбиталей. Их сравнительные возможности.
- •2. Электроанализ: потенциометрия, вольтамперометрия, кулонометрия.
- •3. Радикальная, катионная, анионная полимеризация.
- •Билет 4.
- •1.Концепция гибридизации атомных орбиталей. Концепция отталкивания электронных пар. Простанственная конфигурация молекул и ионов.
- •2. Простые вещества, образуемые р-элементами. Аллотропия и полиморфизм. Химические свойства галогенов, кислорода, озона, халькогенов, азота, фосфора, углерода, кремния.
- •3. Нитросоединения. Способы получения и важнейшие свойства.
- •Билет 5
- •1. Нефть, её состав и переработка. Особенности строения и химический состав циклоалканов.
- •2. Спектральные методы анализа и исследования, люминесцентный, эпр- и ямр-спектроскопия.
- •3. Количественные характеристики химической связи: порядок, энергия, длина, степень ионности, дипольный момент, валентный угол.
- •Билет №6.
- •1. Трактовка ионной связи на основе электростатических представлений.
- •2. Оптические методы анализа. Атомно-эмиссионный, атомно-абсорбционный и молекулярно-абсорбционный анализ, реагенты и реакции в фотометрическом анализе. Экстракционно-фотометрический анализ.
- •3. Алкены, методы синтеза и общие представленияо реакционной способности. Присоединение электрофильных реагентов реагентов по двойной связи.
- •Билет №7
- •1. Типы координационной связи (особенности химической связи в комплексных соединениях). Донорно-акцепторный и дативный механизм ее образования.
- •2. Основные различия между нмс и вмс.
- •3. Сульфидный, кислотно-щелочной, аммиачно-фосфатный методы разделения катионов.
- •Билет № 8.
- •1. Метод валентных связей и его недостатки в применении к координационным соединениям. Теория кристаллического поля и мо в применении к комплексным соединениям.
- •2. Экстракционные и сорбционные методы разделения и концентрирования. Факторы, определяющие межфазный перенос компонентов в экстракции и сорбционных системах.
- •Билет №9
- •1. Методы исследования и способы описания геометрических параметров молекулы. Симметрия молекул. Основные виды изомерии молекул и принципы динамической стереохимии
- •2. Простые и комплексные соли. Кристаллогидраты. Гидролиз солей.
- •3. Алкадиены. Сопряженные диены, особенности их строения и свойств. Каучуки.
- •Билет 10.
- •1.Силы Ван-дер-Ваальса. Водородная связь.
- •2. Титриметрия. Кислотно-основное, комплексонометрическое и электрохимическое титрование. Кривые титрования. Индикаторы.
- •3. Алкины. Методы синтеза и важнейшие свойства алкинов. Ацетилен.
- •Билет 11
- •1. Энергетические параметры молекул. Понятие об энергии образования молекул. Энергетические состояния: вращательные, электронные и колебательные спектры молекул.
- •3. Ароматические углеводороды. Промышленное источники аренов, их химические свойства и применение. Механизм и закономерности реакций электрофильного замещения в ароматическом ядре.
- •Билет 12
- •1. Магнитные свойства молекул. Спектры электронного парамагнитного резонанса и ямр спектры. Принципы и возможности исследования структуры и свойств молекул.
- •4. Активация галогенпроизводных и генерация карбокатионов.
- •Билет 13
- •1. Основы тд анализа хим процессов. Постулаты и законы хим тд. Функция состояния: температура, внутр энергия, энтальпия, энтропия, энергии Гиббса и Гельмгольца.
- •2. Особенности свойств р-элементов II и V периодов.
- •3. Спирты и фенолы. Методы получения и сравнительная характеристика хим св-в. Этиленгликоль. Глицерин. Лавсан.
- •14 Билет
- •1.Условия равновесия и критерии самопроизвольного протекания процессов, выраженные через характеристические функции.
- •3.Особенности реакционной способности арилгалогенидов. Получение литий- и магнийорганических соединений, их применение в органическом синтезе.
- •Билет №15
- •1. Энергетика химических реакций, основные законы термохимии и термохимические расчеты.
- •2. Особенности изменения химических свойств d-элементов по группам и периодам по сравнению с p-элементами. Образование катионных и анионных форм, комплексообразование.
- •3. Фенолформальдегидные смолы. Простые эфиры. Методы синтеза и свойства. Диэтиловый эфир.
- •Билет 16
- •2. Гидриды. Типы гидридов: солеобразные, полимерные, летучие, гидриды внедрения. Типичные примеры и общая характеристика свойств каждой группы гидридов. Гидрокомплексы.
- •3. Правило Марковникова и его интерпретация. Реакция по аллильному положению.
- •Билет 17
- •1. Основные типы химической связи: ковалентная, ионная, металлическая. Многоцентровая, σ и π-связи
- •2. Гравиметрия. Варианты гравиметрии: осаждение, отгонка, выделение. Термогравиметрия. Реагенты-осадители: минеральные, органические.
- •3. Альдегиды и кетоны. Методы получения представителей, их свойства
- •Билет 18
- •1. Коллоидное состояние вещества. Особенности свойств дисперсных систем и их классификация. Получение и молекулярно-кинетические свойства дисперсных систем, их устойчивость.
- •2. Гидроксиды. Типы гидроксидов: гидроксиды с ионной, молекулярной, полимерной структурой.
- •3. Енолизация альдегидов и кетонов. Альдольная конденсация и родственные процессы. Реакции альдегидов и кетонов с гетероатомными нуклеофилами. Альфа-бета-непредельные карбинильные соединения.
- •Билет 19
- •2. Периодичность изменения хим св-в э-тов и образуемых ими соединений. Валентность и степень окисления.
- •3. Углеводы. Важнейшие представители моносахаридов, их строение и важнейшие свойства. Дисахариды и полисахариды, сахароза, крахмал, целлюлоза.
- •-Рибоза -дезоксирибоза Рибоза и дезоксирибоза входят в сотав рнк и днк соответственно. Основные реакции моносахаридов, продукты реакций и их свойства
- •Билет №20
- •1. Влияние температуры на скорость химической реакции. Уравнение Аррениуса, понятие об энергии активации и методах ее определения.
- •3. Карбоновые кислоты и их производные. Методы синтеза, взаимные превращения.
- •Билет №21.
- •3. Углеводороды. Алканы. Конформационная изомерия. Важнейшие свободнорадикальные реакции алканов.
- •Билет 22
- •1. Понятие о катализе и катализаторах. Гомогенный и гетерогенный катализ. Энергетические профили каталитических реакций. Основы теории гетерогенного катализа.
- •2. Комплексные соединения. Типичные комплексообразователи и лиганды. Пространственная конфигурация комплексных ионов. Особенности диссоциации комплексных соединений в растворе. Карбонилы металлов.
- •3. Амины. Типы аминов и их свойства. Особенности свойств ароматических аминов. Реакция диазотирования и её значение в органическом синтезе.
- •Билет 23
- •2. Радиоактивационный анализ. Масс-спектральный анализ. Рентгеновская фотоэлектронная спектроскопия. Инфракрасная спектроскопия.
- •3. Гетероциклические соединения, общие принципы их классификации. Важнейшие пятичленные и шестичленные, гетероароматические соединения с одним гетероатомом. Особенности их химических свойств.
- •Билет №24
- •1.Равновесные электродные процессы. Понятие о скачке потенциала на границе раздела фаз. Электрохимический потенциал. Образование и строение двойного электрического слоя.
- •2. Оксиды. Типы оксидов: оксиды с ионной, молекулярной и полимерной структурой.
- •Билет 25
- •3. Декструкция высокомолекулярных соединений. Сшивание высокомолекулярных соединений. Синтез и свойства привитых сополимеров.
2. Радиоактивационный анализ. Масс-спектральный анализ. Рентгеновская фотоэлектронная спектроскопия. Инфракрасная спектроскопия.
Активационный анализ (радиоактивационный анализ), метод качественного и количественного элементного анализа вещества, основанный на активации ядер атомов и исследовании образовавшихся радиоактивных изотопов (радионуклидов) Вещество облучают ядерными частицами (тепловыми или быстрыми нейтронами, протонами, дейтронами, α-частицами и т. д.) или γ-квантами. Затем определяют вид, т. е. порядковый номер и массовое число, образовавшихся радионуклидов по их периодам полураспада Т1/2 и энергиям излучения Е, которые табулированы. Поскольку ядерные реакции, приводящие к образованию тех или иных радионуклидов, обычно известны, можно установить, какие атомы были исходными.
Используют не абсолютный метод определения массы элемента, а сравнение с близким по составу образцом с известным содержанием определяемого элемента, который облучают одновременно с исследуемым:
, I
— радиоактивности.
В зависимости от характера облучающих частиц различают несколько типов активационного анализа: нейтронно-активационный (самый распространенный), протонный, дейтронный, облучение α-частицами, γ-активационный.
Достоинства А. а.: высокая чувствительность, возможность в ряде случаев проводить определение без разрушения образца, высокая избирательность, возможность одновременного определения ряда примесей в одной навеске образца, быстрота.
Недостатки метода: относительно малая доступность источников ядерных частиц или γ-квантов, возможность деструкции и даже разрушения образцов при облучении мощными потоками излучений, относительная, сложность выполнения анализа, радиационная опасность.
Основные области применения А. а.: анализ особо чистых веществ, геологических объектов и объектов окружающей среды; экспрессный анализ металлов и сплавов в промышленности; определение содержания микроэлементов в крови, плазме, тканях животных и растений; суд.-мед. экспертиза.
Масс-спектрометрия (масс-спектроскопия, масс-спектральный анализ), метод анализа вещества путем определения массы (чаще, отношения массы к заряду m/z) и относительного количества ионов, получаемых при ионизации исследуемого вещества или уже присутствующих в изучаемой смеси. Совокупность значений m/z и относительных, величии токов этих ионов, представленная в виде графика или таблицы, называется масс-спектром вещества. Процедура получения масс-спектра включает стадии:
ввод пробы
ионизация
ускорение ионов
собственно масс-анализ
регистрация
Для разделения ионов исследуемого вещества по величинам m/z , измерения этих величин и токов разделенных ионов используются масс-спектрометры и масс-спектрографы.
Ионизация веществ осуществляется несколькими методами: методом электронного удара, химическая ионизация (образование ионов при столкновении частиц исследуемого вещества с молекулами реагентного газа), полевая ионизация (сильным электрическим полем), полевая десорбция, фотоионизация (поглощение фотона), многофотонная ионизация, десорбционная ионизация, лазерная десорбция, ионизация в тепловом и тлеющем разряде, ионизация в индуктивно-связанной плазме.
Идентификацию веществ проводят по изотопам и молекулярным массам. Для пространственного или временного разделения ионов с различными значениями m/z используются масс-анализаторы. Они характеризуются разрешающей способностью и разрешающей силой (способностью разделять ионы с незначительно отличающимися массами).
М.-с. широко применяют в различных областях науки и техники: в химии и нефтехимии, физике, геологии, биологии, медицине, в промышленностии полимеров, в лакокрасочной и хим промышленности, в производстве полупроводников и сверхчистых материалов, в ядерной технике, в с/х и ветеринарии, в пищевой промышленности, при анализе продуктов загрязнения окружающей среды и мн. др.
Рентгеноэлектронная спектроскопия — метод исследования электронного строения химических соединений, состава и структуры поверхности твердых тел, основанный на фотоэффекте с использованием рентгеновского излучения. При облучении вещества происходит поглощение рентгеновского кванта hυ (h-постоянная Планка, υ-частота излучения сопровождающееся эмиссией электрона (наз. фотоэлектроном) с внутренних или внешних оболочек атома. Энерги связи электрона Есв в образце в соответствии с законом сохранения энергии определяется уравнением: Есв = hυ - Екин где Екин — кинетич. энергия фотоэлектрона. Значения Е, электронов внутренних оболочек специфичны для данного атома, поэтому по ним однозначно можно определить состав химического соединения. Кроме того, эти величины отражают характер взаимодействия исследуемого атома с др. атомами в соединяли т.е. зависят от характера хим. связи. Количественный состав образца определяют по интенсивности I потока фотоэлектронов.
РЭС позволяет исследовать все элементы, кроме Н, при содержании их в образце — 10-5 г (пределы обнаружения элемента с помощью РЭС 10-7-10-10 г). Относит, содержание элемента может составлять доли процента. Образцы м. б. твердыми, жидкими или газообразными.
РЭС — один из основных способов определения состава поверхности, широко используется при изучении адсорбции, катализа, коррозии и т.д. Применение метода для этих целей основано на прямой зависимости интенсивности IА(0) линий i изучаемого атома А от его концентрации СА в поверхностном слое толщиной 2-3 нм, сопоставимой с длиной (X) своб. пробега электрона в веществе: 1мп — СА(i)=CА σA(I) λA(i). Величина σA(I) — сечение фотоионизации энергетического уровня i, отражает вероятность ионизации атома А с этого уровня. Для энергетических уровней i и j атомов А и В справедливо соотношение:
РЭС-единственный метод, позволяющий определить толщину d сверхтонких пленок (от 0,5 до 3,0 нм), а также сплошность покрытия (т.е. отсутствие пор).
Инфракрасная спектроскопия (ИК спектроскопия), раздел мололекулярной оптической спектроскопии, изучающий спектры поглощения и отражения электромагнитного излучения в ИК области, т.е. в диапазоне длин волн от 10-6 до 10-3 м. В координатах интенсивность поглощенного излучения—длина волны (или волновое число) ИК спектр представляет собой сложную кривую с большим числом максимумов и минимумов. Полосы поглощения появляются в результате переходов между колебательными уровнями основного электронного состояния изучаемой системы. Спектральные характеристики (положения максимумов полос, их полуширина, интенсивность) индивидуальной молекулы зависят от масс составляющих ее атомов, геометрического строения, особенностей межатомных сил, распределения заряда и др. Поэтому ИК спектры отличаются большой индивидуальностью, что и определяет их ценность при идентификации и изучении строеиия соединений.
Для регистрации спектров используют классические спектрофотометры и фурье-спектрометры.
Все спектрофотометры снабжаются ЭВМ, которые производят первичную обработку спектров накопление сигналов, отделение их от шумов, вычитание фона и спектра сравнения (спектра растворителя — СС14, СНС13, тетрахторэтилен, вазелиновое масло), изменение масштаба записи, вычисление экспериментальных спектральных параметров, сравнение спектров с заданными, дифференцирование спектров и др.
И с широко применяют для анализа смесей и идентификации чистых веществ. Количественный анализ основан на законе Бугера-Ламберта-Бера, т. е. на зависимости интенсивности полос поглощения от концентрации вещества в пробе. При этом о количестве вещества судят не по отдельным полосам поглощения, а по спектральным кривым в целом в широком диапазоне длин волн. Если число компонентов невелико (4-5), то удается математически выделить их спектры даже при значительном перекрывании последних Погрешность количественного анализа, как правило, составляет доли процента Идентификация чистых в-в производится обычно с помощью информационно-поисковых систем путем автоматич сравнения анализируемого спектра со спектрами, хранящимися в памяти ЭВМ.
И с позволяет идентифицировать пространственные и конформационные изомеры, изучать внутри- и межмолекулярные взаимодействия, характер химических связей, распределение зарядов в молекулах, фазовые превращения, кинетику химических реакций, регистрировать короткоживущие (время жизни до 10-6 с) частицы, уточнять отдельные геометрические параметры, получать данные для вычисления термодинамических функций и др.