- •1. Мембранная система клетки
- •1.1. Плазмолемма
- •1.2. Плазматическая сеть
- •1.3. Пластинчатый комплекс
- •1.4. Лизосомы
- •1.5. Другие органоиды мембранной системы
- •1.5.1. Пероксисомы
- •1.5.2. Эндосомы
- •1.5.3. Секреторные везикулы и гранулы
- •1.5.4. Вакуоли и сферосомы растительных клеток
- •2. Рибосомы
- •2.1. Локализация рибосом в клетке
- •2.2. Рибосомы прокариот и эукариот
- •2.3. Морфология рибосом
- •2.4. Химический состав рибосом
- •Рибосомальные рнк
- •2.5. Белоксинтезирующая система
- •Бесклеточная система трансляции
- •2.6. Биосинтез белка
- •3. Цитоскелет
- •3. 1. Микрофиламенты
- •3. 2. Микротрубочки
- •Связанные с микротрубочками белки
- •3. 3. Промежуточные филаменты
- •3. 4. Микротрабекулярная сеть
- •4. Митохондрии и пластиды
- •4. 1. Митохондрии
- •4.1.1. Ультраструктура митохондрий
- •4.1.2. Функции митохондрий
- •4.1.3. Размножение митохондрий
- •4.1.4. Гипотезы происхождения митохондрий
- •4.2. Пластиды
- •4.2.1. Хлоропласт
- •4.2.2. Геном хлоропластов
- •4.2.3. Размножение и превращения пластид
- •5. Клеточное ядро
- •5.1. Структура клеточного ядра
- •5. 2. Хроматин
- •5. 2. 1. Свойства эукариотической днк
- •5. 2. 2. Белки хроматина
- •5.2.3. Уровни структурной организации хроматина
- •5.3. Ядрышко
- •6. Включения
- •6.1.Экзогенные включения
- •6.2. Эндогенные включения
- •6.3.Вирусные включения
- •7. Размножение и гибель клеток
- •7.1. Клеточный цикл и митоз
- •7.2. Регуляция клеточного цикла и митоза
- •7.3. Апоптоз
- •7.4. Мейоз
- •8. Эпителиальные ткани
- •8.1. Общая характеристика эпителиев
- •Морфологическая классификация эпителиев
- •8.2. Эпителий кишечника
- •8.3. Эпидермис
- •8.4. Железистый эпителий
- •Морфологическая классификация экзокринных желез
- •9. Ткани внутренней среды
- •9.1. Рыхлая волокнистая соединительная ткань
- •9.2. Плотные соединительные ткани
- •9.3. Специальные соединительные ткани
- •Разновидности жировой ткани
- •9.4. Хрящевая ткань
- •9.5. Костная ткань
- •9.6. Кровь.
- •9.6.1. Форменные элементы крови
- •9.6.2. Гистогенез крови
- •10. Мышечные ткани
- •Морфофизиологическая классификация мышечных тканей
- •Гистогенетическая классификация мышечных тканей
- •10.1. Поперечно-полосатая мышечная ткань
- •Белые и красные мионы млекопитающих
- •10.2. Сердечная мышечная ткань
- •10.3. Гладкая мышечная ткань
- •10.4. Гистогенез мышечных тканей
- •11. Нервная ткань
- •11. 1. Клетки нервной ткани
- •Классификация и функции клеток нейроглии
- •11.2. Нервные волокна
- •11.3. Синапсы
- •11.4. Нервные окончания
5. 2. Хроматин
Хроматин, несомненно, представляет собой наиболее важный компонент клеточного ядра, поскольку именно в нем содержится геном клетки. В ядрах клеток печени содержание хроматина составляет не менее 6570 %. Хроматин состоит из ДНК и белков, причем на ДНК приходится 30 % массы хроматина, а на белки70 %.
5. 2. 1. Свойства эукариотической днк
В химическом отношении ДНК хроматина представляет собой двуспиральный полимер из дезоксирибонуклеотидов, различающихся азотистыми основаниями – аденином, гуанином, цитозином и тимином. Основания каждой из цепей комплементарно связаны между собой попарно: аденин с тимином, а гуанин с цитозином. Одна из цепей ДНК используется для хранения наследственной информации, тогда как комплементарная ей цепь является матрицей для копирования первой.
Наследственная информация записана в смысловой цепи ДНК в виде последовательности нуклеотидов в соответствии с генетическим кодом. В связи с тем, что последовательность нуклеотидов почти не отражается на свойствах молекулы ДНК, с химической точки зрения эту молекулу можно считать однородной на всем ее протяжении.
Общее количество ДНК в диплоидном ядре эукариот колеблется в пределах от 0,033 пг у дрожжей до 200 пг у амфибий (1 пикограмм = 10-12грамма). У человека масса ДНК в диплоидном ядре составляет 7,3 пг.
В генетическом плане, однако, молекула ДНК эукариот весьма неоднородна. Она представлена уникальными последовательностями, которые кодируют первичную структуру белков, и не кодирующими белкиповторами. Уникальные последовательности принадлежатструктурным генам. Общее количество структурных генов в геноме эукариот варьирует от 10 тысяч у беспозвоночных до 30 тысяч у млекопитающих. Однако структурные гены составляют не более трети всего генома. Остальную часть генома занимают некодирующие повторы – так называемая “балластная” ДНК.
Некодирующие последовательности ДНК представлены двумя группами повторов – рассеянными по всему геному относительно короткими диспергированными повторамии длинными (повторяющимися более 106 раз)сателлитными и теломерными ДНК. В группу диспергированных повторов входят, в частности, диспергированные элементыLINE-1, занимающие до 20 % генома у млекопитающих. В дифференцированных соматических клетках они не транскрибируются, активируясь только при созревании половых клеток и в опухолях. Повторяющиеся последовательности сателлитных ДНК локализованы в области первичных перетяжек хромосом – центромер. Показано, что они участвуют в конъюгации негомологичных хромосом в интерфазном ядре. Теломерные ДНК также выполняют важные функции, участвуя в прикреплении хромосом к внутренней поверхности нуклеолеммы и в контроле числа делений соматических клеток.
Многие структурные гены также могут иметь повторы. Например, гены рибосомальных РНК могут быть повторены от 100 до 1000 раз, а гены гистонов – до 400 раз. Однако уровень их повторяемости явно ниже, чем у некодирующей ДНК. Большая часть некодирующей ДНК связана с гетерохроматином, основная функция которого состоит, вероятно, в структурировании генома эукариот.