
- •Часть 1
- •Линейная алгебра. Основные определения.
- •Основные действия над матрицами.
- •Операция умножения матриц.
- •Свойства операции умножения матриц.
- •Определители.( детерминанты).
- •Элементарные преобразования матрицы.
- •Миноры.
- •Алгебраические дополнения.
- •Ранг матрицы.
- •Теорема о базисном миноре.
- •Матричный метод решения систем линейных уравнений.
- •Метод Крамера.
- •Элементарные преобразования систем.
- •Теорема Кронекера – Капелли.
- •Метод Гаусса.
- •Элементы векторной алгебры.
- •Свойства векторов.
- •Линейная зависимость векторов.
- •Система координат.
- •Декартова система координат.
- •Линейные операции над векторами в координатах. Пусть заданы векторы в прямоугольной системе координат
- •Скалярное произведение векторов.
- •Векторное произведение векторов.
- •Смешанное произведение векторов.
- •Уравнение поверхности в пространстве.
- •Общее уравнение плоскости.
- •Уравнение плоскости, проходящей через три точки.
- •Уравнение плоскости в отрезках.
- •Уравнение плоскости в векторной форме.
- •Расстояние от точки до плоскости.
- •Аналитическая геометрия. Уравнение линии на плоскости.
- •Уравнение прямой на плоскости.
- •Уравнение прямой по точке и вектору нормали.
- •Уравнение прямой, проходящей через две точки.
- •Уравнение прямой по точке и угловому коэффициенту.
- •Уравнение прямой по точке и направляющему вектору.
- •Уравнение прямой в отрезках.
- •Нормальное уравнение прямой.
- •Угол между прямыми на плоскости.
- •Уравнение прямой, проходящей через данную точку перпендикулярно данной прямой.
- •Расстояние от точки до прямой.
- •Кривые второго порядка. Кривая второго порядка может быть задана уравнением
- •Окружность.
- •Эллипс.
- •Гипербола.
- •Парабола.
- •Полярная система координат.
- •Аналитическая геометрия в пространстве. Уравнение линии в пространстве.
- •Уравнение прямой в пространстве по точке и направляющему вектору.
- •Уравнение прямой в пространстве, проходящей через две точки.
- •Общие уравнения прямой в пространстве.
- •Угол между плоскостями.
- •Условия параллельности и перпендикулярности
- •Поверхности вращения.
- •Приведение квадратичных форм к каноническому виду.
- •Введение в математический анализ. Числовая последовательность.
- •Ограниченные и неограниченные последовательности.
- •Монотонные последовательности.
- •Число е.
- •Предел функции в точке.
- •Предел функции при стремлении аргумента к бесконечности.
- •Основные теоремы о пределах.
- •Бесконечно малые функции.
- •Бесконечно большие функции и их связь с бесконечно малыми.
- •Сравнение бесконечно малых функций.
- •Некоторые замечательные пределы.
- •Непрерывность функции в точке.
- •Свойства непрерывных функций.
- •Непрерывность некоторых элементарных функций.
- •Точки разрыва и их классификация.
- •Непрерывность функции на интервале и на отрезке.
- •Свойства функций, непрерывных на отрезке.
- •Комплексные числа.
- •Тригонометрическая форма числа.
- •Действия с комплексными числами.
- •Показательная форма комплексного числа.
- •Разложение многочлена на множители.
- •Элементы высшей алгебры. Основные понятия теории множеств.
- •Операции над множествами.
- •Алгебраические структуры.
- •Дискретная математика. Элементы комбинаторики.
- •Бином Ньютона. (полиномиальная формула)
- •Элементы математической логики.
Элементы математической логики.
Математическая логика – разновидность формаьной логики, т.е. науки, которая изучает умозаключения с точки зрения их формального строения.
Определение. Высказыванием называется предложение, к которому возможно применить понятия истинно или ложно.
В математической логике не рассматривается сам смысл высказываний, определяется только его истинность или ложность, что принято обозначать соответственно И или Л.
Понятно, что истинные и ложные высказывания образуют соответствующие множества. С помощью простых высказываний можно составлять более сложные, соединяя простые высказывания союзами “и”, “или”.
Таким образом, операции с высказываниями можно описывать с помощью некоторого математического аппарата.
Вводятся следующие логические операции (связки) над высказываниями
Отрицание. Отрицанием высказывания Р называется высказывание, которое истинно только тогда, когда высказывание Р ложно.
Обозначается
Р
или
.
Соответствие между высказываниями определяется таблицами истинности. В нашем случае эта таблица имеет вид:
-
P
Р
И
Л
Л
И
2) Конъюнкция. Конъюнкцией двух высказываний P и Q называется высказывание, истинное тогда и только тогда, когда истинны оба высказывания.
Обозначается P&Q или РQ.
-
P
Q
P&Q
И
И
И
И
Л
Л
Л
И
Л
Л
Л
Л
3) Дизъюнкция. Дизъюнкцией двух высказываний P и Q называется высказывание, ложное тогда и только тогда, когда оба высказывания ложны.
Обозначается PQ.
-
P
Q
PQ
И
И
И
И
Л
И
Л
И
И
Л
Л
Л
4) Импликация. Импликацией двух высказываний P и Q называется высказывание, истинное тогда и только тогда, когда высказывание Р истинно, а Q – ложно.
Обозначается PQ (или РQ). Высказывание Р называется посылкой импликации, а высказывание Q – следствием.
-
P
Q
PQ
И
И
И
И
Л
Л
Л
И
И
Л
Л
И
5) Эквиваленция. Эквиваленцией двух высказываний P и Q называется высказывание, истинное тогда и только тогда, когда истинности высказываний совпадают.
Обозначается РQ или РQ.
-
P
Q
PQ
И
И
И
И
Л
Л
Л
И
Л
Л
Л
И
С помощью этих основных таблиц истинности можно составлять таблицы истинности сложных формул.
Пример. С помощью таблиц истинности проверить, являются ли эквивалентными формулы и .
Составим таблицы истинности для каждой формулы:
-
p
r
(pr)
И
И
Л
И
И
И
Л
Л
Л
И
Л
И
И
Л
Л
Л
Л
И
Л
Л
-
p
r
И
И
Л
Л
Л
И
И
Л
Л
И
И
И
Л
И
И
Л
И
И
Л
Л
И
И
И
И
Данные формулы не являются эквивалентными.
Пример. С помощью таблиц истинности проверить, являются ли эквивалентными формулы и .
Составим таблицы истинности для заданных формул.
-
p
q
r
pq
(pq)r
И
И
И
И
И
И
И
Л
И
И
И
Л
И
Л
И
И
Л
Л
Л
Л
Л
И
И
Л
И
Л
И
Л
Л
Л
Л
Л
И
И
И
Л
Л
Л
И
И
p |
q |
r |
pq |
qp |
(pq)(qp) |
(pq)(qp)r |
И |
И |
И |
И |
И |
И |
И |
И |
И |
Л |
И |
И |
И |
И |
И |
Л |
И |
Л |
И |
И |
И |
И |
Л |
Л |
Л |
И |
И |
И |
Л |
И |
И |
И |
Л |
И |
И |
Л |
И |
Л |
И |
Л |
И |
И |
Л |
Л |
И |
И |
И |
И |
И |
Л |
Л |
Л |
И |
И |
И |
И |
Из составленных таблиц видно, что данные формулы не равносильны.