- •Міністерство освіти і науки, молоді та спорту україни
- •Розділ і. Лінійна алгебра
- •Тема 1: Матриці. Різновиди матриць. Операції над матрицями. Матриці та їх різновиди.
- •Операції над матрицями.
- •Завдання для розв’язування.
- •Тема 2: Визначники, правила їх обчислення. Властивості визначників. Обернена матриця. Визначники, правила їх обчислення.
- •Властивості визначників.
- •Завдання для розв’язування.
- •Обернена матриця.
- •Тема 3: Ранг матриці. Знаходження рангу матриці.
- •Методом елементарних перетворень.
- •Завдання для розв’язування.
- •Матричний метод
- •Метод Крамера.
- •Завдання для розв’язування.
- •Дослідження та розв’язування систем лінійних рівнянь з невідомими.
- •Розв’язування систем m лінійних рівнянь з n невідомими методом Жордана-Гаусса.
- •Тема 5: Лінійний векторний простір. Лінійно залежні та лінійно незалежні векторні системи, їх властивості. Базис. Розклад за базисом. Лінійний векторний простір.
- •Лінійно залежні та лінійно незалежні векторні системи, їх властивості.
- •Властивості лз векторних систем.
- •Властивості лнз векторних систем.
- •Зауваження. Розділ іі. Аналітична геометрія
- •Тема 6: Метод координат. Елементи векторної алгебри. Найпростіші задачі аналітичної геометрії.
- •Метод координат.
- •Елементи векторної алгебри.
- •Основні означення.
- •Операції над векторами.
- •Умова колінеарності.
- •Скалярний добуток.
- •3. Вектори і перпендикулярні тоді і тільки тоді, коли їх скалярний добуток дорівнює нулю, тобто
- •Завдання для розв’язування.
- •Найпростіші задачі аналітичної геометрії.
- •Завдання для розв’язування
- •Тема 7: Рівняння лінії. Основне означення аналітичної геометрії. Пряма на площині. Рівняння лінії.
- •Пряма лінія.
- •Дослідження загального рівняння прямої
- •Рівняння прямої, що проходить через дану точку паралельно даному вектору (канонічне рівняння прямої).
- •Рівняння прямої, що проходить через дві задані точки.
- •Рівняння прямої у відрізках на осях.
- •Відстань від точки до прямої.
- •Кутовий коефіцієнт прямої. Рівняння прямої з кутовим коефіцієнтом.
- •Взаємне розташування двох прямих. Умова паралельності та перпендикулярності прямих.
- •Тема 8: Перетворення системи координат.
- •Паралельне перенесення
- •2. Поворот координатних осей
- •Тема 9: Криві іі порядку.
- •Характеристична властивість точок еліпса
- •Характеристична властивість точок м(х; у) гіперболи.
- •Рівнобічна гіпербола.
- •Характеристична властивість точок параболи (геометричне означення параболи).
- •Завдання для розв’язування.
- •Тема 10: Застосування методів лінійної алгебри та аналітичної геометрії до розв’язування деяких економічних задач.
- •Розділ ііі. Вступ до аналізу
- •Тема 11: Функції. Основні поняття. Послідовності. Границя послідовності. Властивості границі. Функції. Основні поняття.
- •Послідовності.
- •Властивості границі.
- •Властивості нм
- •Арифметичні теореми для збіжних послідовностей.
- •Теореми порівняння.
- •Розкриття невизначеностей.
- •Неперервність функції.
- •Класифікація точок розриву.
- •Властивості функцій, неперервних на замкненому проміжку.
- •Розділ іу. Диференціальне числення
- •Арифметичні теореми. Похідна складеної, оберненої функції. Таблиця похідних основних елементарних функцій. Логарифмічне диференціювання, похідна неявної функції.
- •Похідна неявної функції, логарифмічне диференціювання.
- •Диференціал. Геометричний сенс, інваріантність форми диференціалу. Похідні та диференціали вищих порядків.
- •Основні властивості диференціала.
- •Критерій монотонності, наслідок. Екстремум функції. Необхідна умова екстремума. Перша достатня умова екстремума. Дослідження функцій на монотонність та екстремуми.
- •Опуклість, угнутість, точки перегину. Друга достатня умова екстремума. Асимптоти. Повне дослідження функції.
- •Тема 16: Застосування методів диференціального числення до розв’язування деяких економічних задач.
- •Практичне заняття №1
- •Практичне заняття №4
- •Практичне заняття №6
- •Практичне заняття №8
- •1. Криві другого порядку, їх класифікація.
- •2. Дослідження кривих (зведення до нормальних рівнянь). Основні параметри кривих та їх схематична побудова.
- •Практичне заняття №8
- •Практичне заняття №11
- •Практичне заняття №13
- •Практичне заняття №14 контрольна робота з техніки диференціювання практичне заняття №15
- •Практичне заняття №16
- •Практичне заняття №17
- •Практичне заняття №18
Характеристична властивість точок м(х; у) гіперболи.
Модуль
різниці фокальних радіусів
є величина стала, що дорівнює дійсній
осі:
.
Зауважимо, що цю властивість можна прийняти як геометричне означення гіперболи.
б)
рівняння
визначає так звану „спряжену” до
випадку а) гіперболу з дійсною віссю
– на прямій
(див. рис.6):
F1 M
(x, y)
y
|
F2
x 0 B1 B2 A1 A2 b b a a O’ y
= y0 x
= x0 Рис.6 |
Параметри
аналогічні гіперболі а)
, тільки:
– уявна,
– дійсна півосі; фокуси і вершини
знаходяться на прямій
;
ексцентриситет
.
Наприклад:
;
гіперболічний
випадок
;
;
;
;
;
;
;
–гіпербола.
(рис.7)
Схематична побудова:
|
х у 3 F2 F1 2,2 3,7 Рис.7 3,7 |
Параметри:
центр
фокуси
відстань
від центра до фокусів
|
2.
Якщо
,
то ліву частину рівняння(9.2)
можна розкласти на множники як різницю
квадратів:
,
тому рівняння визначатиме на площині дві прямі (вироджена гіпербола).
Наприклад:
;
гіпербола;
;
;
;
|
–1 3 1 х y 5 l1 l2 Рис.8 |
|



Рівнобічна гіпербола.
Розглянемо
рівнобічну гіперболу
з центром у точці
:
або
(рис.9)
|
а а y x x’ y’ Рис.9 |
Очевидно,
асимптотами рівнобічної гіперболи є
бісектриси І, ІІІ і ІІ, ІV
координатних кутів, які визначаються
рівняннями
|
;
;
або
,
де
.
Висновок:
Графіком функції
(оберненої пропорційної залежності) є
рівнобічна гіпербола. Неважко показати,
що графіком дробово–лінійної функції
теж є рівнобічна гіпербола.
Наприклад:
побудувати графік функції
.
|
y x 2 1 x
= 1 y
= 2 O’ 0 Рис.10 |
Виконаємо перетворення:
асимптоти
– прямі
(див. рис.10) |
ІІІ.
Параболічний випадок (
)
1.
Нехай
.
Якщо коефіцієнт при
у загальному рівнянні (8.1) відмінний від
нуля (
),
то, виділяючи повний квадрат по змінній
,
рівняння зводиться до одного із видів:
а)
(рис.11) або
б)
(рис.12)–
нормальні рівняння параболи, які
визначають на площині
такі криві:
|
y
а
x
= x0
– p/2
F p/2 p/2
y
= y0
x 0
x
= x0
Рис.11
|
y x 0 x
= x0 x
= x0
+ p/2
б
y
= y0 p/2 p/2 F Рис.12 |
Параметри
парабол:
– вершина;
– фокус,
– параметр, який дорівнює відстані від
фокуса до директриси: дляа)
– пряма
,
дляб)
– пряма
;
вітки параболи симетричні відносно осі
параболи – прямої
і направлені у випадкуа)
вправо, а у випадку б)
вліво.




































)









)