- •Ssd2: Introduction to Computer Systems contents
- •Prerequisites
- •Course Textbook
- •Hardware/Software Requirements
- •The purpose of ssd2 is for students to
- •Students successfully completing ssd2 will be able to
- •1.1 Overview of Computer Systems
- •1.1.1 Components of a Computer System
- •Hardware System
- •Software System—Operating System Software and Application Software
- •Network System
- •1.2 Evolution of Computer Systems
- •1.2.1 Brief History
- •1200S—Manual Calculating Devices
- •1600S—Mechanical Calculators
- •1800S—Punched Cards
- •1940S—Vacuum Tubes
- •1950S—Transistors
- •1960S—Integrated Circuits
- •1970S to Present—Microprocessor
- •Pace of Advancement
- •1.2.2 Applications of Computer Systems
- •In Education Multimedia-Facilitated Learning
- •Simulation-Based Education
- •Intelligent Machine-Based Training
- •Interactive Learning
- •In Business Supply Chain Management
- •Project Management
- •Customer Relationship Management
- •Sales and Marketing Using Electronic Commerce
- •Manufacturing Research
- •In Entertainment Movies
- •Video Games
- •1.3 Data Representation in a Computer System
- •1.3.1 Bits and Bytes
- •Data Representation Using Binary Digits
- •Increasing Need for Bytes
- •1.3.2 Number Systems
- •Decimal
- •Hexadecimal
- •Learning Exercise
- •2.1 Processor and Memory
- •2.1.1 Processor Basics
- •Processor
- •Instruction Execution with the cpu
- •Performance: Factors and Measures
- •Types of Processors
- •2.1.2 Types of Memory
- •Cmos Memory
- •Summary
- •2.1.3 Lab: Benchmarking (Optional)
- •2.2 Peripherals
- •2.2.1 Connecting Peripherals
- •Expansion Slots and Cards
- •Usb and FireWire
- •Comparing Different Ports
- •2.2.2 Buses
- •2.2.3 Input/Output Devices
- •Input Devices
- •Cameras
- •Digital Camcorders
- •Scanners
- •Output Devices: Monitors and Projectors
- •Crt Monitors
- •Lcd Monitors
- •Projectors
- •Output Devices: Printers
- •Ink Printers
- •Dye-Sublimation Printers
- •Laser Printers
- •Comparing Printers
- •2.3 Storage Devices
- •2.3.1 Disk Controller Interfaces
- •Ide Interface
- •Eide Master/Slave
- •2.3.2 Mass Storage
- •How Mass Storage Devices Differ from ram
- •Disk Drive Reliability
- •Optical Media: cDs versus dvDs
- •Magnetic Media
- •Optical versus Magnetic
- •Solid State
- •Comparing Storages
- •2.4 Putting Together the Hardware Components
- •2.4.1 How Components Work Together
- •2.4.2 Lab: Researching a Computer System
- •2.4.3 Lab: Online Configuration
- •2.5 Improving Computer Performance
- •2.5.1 Moore's Law
- •2.5.2 Bottlenecks
- •Bottlenecks—Slowing a Process
- •Typical Bottlenecks
- •Eliminating Bottlenecks
- •2.5.3 Throughput and Latency
- •Unit 3. Operating System Software
- •3.1 Structure
- •3.1.1 Layers of Software
- •Layers and Process Management
- •Encapsulation and Abstraction
- •Layers of Software
- •3.1.2 The bios: Life at the Bottom
- •The Role of the bios
- •Changing bios Settings
- •3.1.3 Process Control
- •3.1.4 Lab: The Task Manager
- •3.2 Device Management and Configuration
- •3.2.1 Interrupt Handling
- •Interrupts
- •Interrupt Priority and Nested Interrupts
- •Traps and Faults
- •3.2.2 Hardware Attributes
- •Installing Drivers
- •Changing a Driver's Configuration
- •3.2.3 Configuration
- •3.2.4 Lab: Device Management
- •3.3 Resource Sharing
- •3.3.1 Virtual Memory
- •Managing Memory
- •Relocation
- •Virtual Memory
- •3.3.2 File and Printer Sharing
- •Printers
- •3.4 File Systems
- •3.4.1 File Organization
- •Folders
- •Shortcuts
- •File Names and Types
- •3.4.2 File Allocation Table and nt File System
- •Clusters and File Allocation Tables
- •Nt File System
- •Unit 4. Application Software
- •4.1 Software Basics
- •4.2 Using Software Systems
- •4.2.1 Lab: dos Commands
- •4.2.2 Lab: Macros
- •4.2.3 Lab: Embedding Application Objects
- •4.3 Batch Script Files
- •4.3.1 Advanced Command-Line Functions
- •Dos Command Syntax
- •Review of File System Commands
- •Wildcard Characters
- •Redirection and Piping
- •4.3.2 Batch File Commands
- •Batch Files
- •Commands
- •4.3.3 Lab: Creating a Batch File
- •Example of a Batch File
- •Example of a Batch File with Arguments
- •4.4 Databases
- •4.4.1 Lab: Searching the Library of Congress
- •4.5 Software Engineering
- •4.5.1 Issues in Large-Scale Software Development
- •The Software Development Process
- •Define or Redefine the Problem
- •Plan a Solution to the Problem
- •Code the Solution
- •Evaluate and Test Everything
- •4.5.2 Open Source Model
- •Free Software
- •4.5.3 Tools for Software Creation and Management
- •Editors
- •Compilers
- •Debuggers
- •Integrated Development Environments (idEs)
- •Unit 5. Network Systems
- •5.1 Internet Basics
- •5.1.1 Mime Types
- •5.1.2 Internet Languages
- •JavaScript
- •5.2 Local and Wide Area Networks
- •5.3 Communication Strategies
- •5.3.1 Client-Server Framework
- •5.3.2 Peer-to-Peer Connectivity
- •5.4 Data Transfer Technologies
- •5.5 Internet Architecture
- •5.5.1 Routers and tcp/ip
- •Internet Protocol
- •Routers
- •Transmission Control Protocol
- •5.5.2 Domain Name Service
- •Domain Name Service
- •5.5.3 Connectivity
- •Conventional Analog Phone Lines
- •Isdn: Integrated Services Digital Network
- •Cable Modem
- •XDsl: Digital Subscriber Line
- •Dedicated High Speed Lines
- •5.5.4 Internet Service Providers
- •Unit 6. Computer Security
- •6.1 Security Threats
- •6.1.1 Intruders: Who, Why, and How?
- •6.1.2 Identity Theft and Privacy Violation
- •Password Cracking
- •Packet sniffing
- •Social Engineering/Fraud
- •Spoofing
- •Port Scanning
- •6.1.3 Malicious Software
- •Trojan Horse
- •Prevention
- •Detection
- •Counter Measures
- •6.1.4 Denial of Service
- •Network Connectivity
- •Network Bandwidth
- •Other Resource Consumption Attacks
- •Distributed Denial of Service Attack
- •Prevention
- •6.2 Security Technologies
- •6.2.1 Encryption
- •Substitution Cipher
- •Transmitting the Key
- •Private Key Encryption Scheme
- •Public Key Encryption Scheme
- •Hybrid Encryption Schemes
- •6.2.2 Applications of Encryption
- •Hard Drives
- •Dvd Movies
- •Cellular Phones
- •6.2.3 Authentication
- •Strong Passwords
- •Smart Cards
- •Biometrics
- •Digital Signatures
- •Digital Certificates and Certificate Authorities
- •Ssl Protocol
- •6.3 Prevention, Detection, and Recovery
- •6.3.1 Firewall
- •Application Gateway
- •Packet Filter
- •Application Gateway versus Packet Filter
- •Intruder Attacks Prevented by Firewall
- •Setting up a Firewall
- •6.3.2 Intrusion Detection Tools
- •Intrusion Detection Systems
- •Network Monitoring Tools
- •Anti-Virus Software
- •6.3.3 Data Recovery
- •6.3.4 Summary of Security Tips
6.1.3 Malicious Software
Virus
Trojan Horse
Worm
Prevention
Detection
Counter Measures
Malicious software accounts for a significant portion of computer system attacks. Billions of dollars are spent after the attacks in clean-up costs. Malicious software can manipulate your machine, alter the data on your storage media, and violate the integrity of your data. Some malicious software programs can corrupt your files and spread to other machines through the network. Important data such as login names, passwords, credit card information, financial statements, and business proposals can be deleted, altered, or rendered illegible by the machine. This section introduces three common classes of malicious software programs: virus, Trojan horse, and worm.
Virus
A virus attaches itself to a file or software application, and then replicates itself on the host computer, spreading copies of itself to other files. It can corrupt files, alter or destroy data, display irritating messages, and/or disrupt computer operations. When a computer opens an infected file, it executes the attached virus instructions. An undetected virus can hide in a computer for days or months, while reproducing itself, and attaching itself to other files. The infected files may be spread when a user transfers them via the Internet or removable storage media to other computers.
Viruses are categorized by the type of files they infect. Some common categories are as follows:
Boot sector- compromises the system at the lowest level. This leads to difficulties in starting the system securely; it also causes recurring problems during the computers operation
Application software- infects executable files (for example, .exe files)
Macro- infects macro files and documents that use macros such as Microsoft Excel and Microsoft Word; it is attached to a document or worksheet, and often distributed as an e-mail attachment. When one opens the document, the macro virus copies itself into the other macro files, where it is picked up by other documents.
Virus sample: Melissa Macro Virus
The Melissa virus arrives as an email message with an infected Word document (often named "list.doc") attached. The subject line of the email usually contains, "important message from". It affects Outlook or Outlook Express mail client users. When the attachment is opened, the virus program will execute if macros are enabled. First, the virus will alter the macro security setting to allow other macros to execute. It spreads by accessing the user's Outlook address book and sends copies of itself along with the document that contains it to other users without the original user's knowledge. If the document contains sensitive information, the sensitive information may be exposed to other users. Additionally, once the infected file is opened, it can infect other Word files. If an infected Word file is emailed to another user, the receiver of the message will have a Melissa-infected attachment.
You can learn more about Melissa virus.
Viruses frequently have double extensions such as .txt.vbs, .mpg.exe, and .gif.scr. The files attached to the email messages sent by these viruses may appear to be harmless files of type: text (.txt), movie (.mpg), picture (.gif) or other file types, when in fact the file is a malicious script or executable, for example, .vbs, .exe, .scr. If you are using the Microsoft Windows operating system, be aware that the operating system hides extensions for known file types by default. To make file extensions visible, you can click on My Computer on the desktop, then from the Tools menu, select Folder Options... Click on the View tab, and uncheckHide file extensions for known file types option.
Virus sample with hidden extensions: Love Bug
This virus arrives as an email attachment, LOVE-LETTER-FOR-YOU.TXT.vbs. Once you open the attachment, the virus overwrites most of the music, graphics, document, spreadsheet, and Web files on your disk. Then the virus mails itself to everyone in your email address book. The damage due to the Love Bug cost up to US$8.7 billion in lost productivity and system repairs according to Computer Economics estimates.
For further information about viruses, visit the CERT Computer Virus Resource page.
