- •Ssd2: Introduction to Computer Systems contents
- •Prerequisites
- •Course Textbook
- •Hardware/Software Requirements
- •The purpose of ssd2 is for students to
- •Students successfully completing ssd2 will be able to
- •1.1 Overview of Computer Systems
- •1.1.1 Components of a Computer System
- •Hardware System
- •Software System—Operating System Software and Application Software
- •Network System
- •1.2 Evolution of Computer Systems
- •1.2.1 Brief History
- •1200S—Manual Calculating Devices
- •1600S—Mechanical Calculators
- •1800S—Punched Cards
- •1940S—Vacuum Tubes
- •1950S—Transistors
- •1960S—Integrated Circuits
- •1970S to Present—Microprocessor
- •Pace of Advancement
- •1.2.2 Applications of Computer Systems
- •In Education Multimedia-Facilitated Learning
- •Simulation-Based Education
- •Intelligent Machine-Based Training
- •Interactive Learning
- •In Business Supply Chain Management
- •Project Management
- •Customer Relationship Management
- •Sales and Marketing Using Electronic Commerce
- •Manufacturing Research
- •In Entertainment Movies
- •Video Games
- •1.3 Data Representation in a Computer System
- •1.3.1 Bits and Bytes
- •Data Representation Using Binary Digits
- •Increasing Need for Bytes
- •1.3.2 Number Systems
- •Decimal
- •Hexadecimal
- •Learning Exercise
- •2.1 Processor and Memory
- •2.1.1 Processor Basics
- •Processor
- •Instruction Execution with the cpu
- •Performance: Factors and Measures
- •Types of Processors
- •2.1.2 Types of Memory
- •Cmos Memory
- •Summary
- •2.1.3 Lab: Benchmarking (Optional)
- •2.2 Peripherals
- •2.2.1 Connecting Peripherals
- •Expansion Slots and Cards
- •Usb and FireWire
- •Comparing Different Ports
- •2.2.2 Buses
- •2.2.3 Input/Output Devices
- •Input Devices
- •Cameras
- •Digital Camcorders
- •Scanners
- •Output Devices: Monitors and Projectors
- •Crt Monitors
- •Lcd Monitors
- •Projectors
- •Output Devices: Printers
- •Ink Printers
- •Dye-Sublimation Printers
- •Laser Printers
- •Comparing Printers
- •2.3 Storage Devices
- •2.3.1 Disk Controller Interfaces
- •Ide Interface
- •Eide Master/Slave
- •2.3.2 Mass Storage
- •How Mass Storage Devices Differ from ram
- •Disk Drive Reliability
- •Optical Media: cDs versus dvDs
- •Magnetic Media
- •Optical versus Magnetic
- •Solid State
- •Comparing Storages
- •2.4 Putting Together the Hardware Components
- •2.4.1 How Components Work Together
- •2.4.2 Lab: Researching a Computer System
- •2.4.3 Lab: Online Configuration
- •2.5 Improving Computer Performance
- •2.5.1 Moore's Law
- •2.5.2 Bottlenecks
- •Bottlenecks—Slowing a Process
- •Typical Bottlenecks
- •Eliminating Bottlenecks
- •2.5.3 Throughput and Latency
- •Unit 3. Operating System Software
- •3.1 Structure
- •3.1.1 Layers of Software
- •Layers and Process Management
- •Encapsulation and Abstraction
- •Layers of Software
- •3.1.2 The bios: Life at the Bottom
- •The Role of the bios
- •Changing bios Settings
- •3.1.3 Process Control
- •3.1.4 Lab: The Task Manager
- •3.2 Device Management and Configuration
- •3.2.1 Interrupt Handling
- •Interrupts
- •Interrupt Priority and Nested Interrupts
- •Traps and Faults
- •3.2.2 Hardware Attributes
- •Installing Drivers
- •Changing a Driver's Configuration
- •3.2.3 Configuration
- •3.2.4 Lab: Device Management
- •3.3 Resource Sharing
- •3.3.1 Virtual Memory
- •Managing Memory
- •Relocation
- •Virtual Memory
- •3.3.2 File and Printer Sharing
- •Printers
- •3.4 File Systems
- •3.4.1 File Organization
- •Folders
- •Shortcuts
- •File Names and Types
- •3.4.2 File Allocation Table and nt File System
- •Clusters and File Allocation Tables
- •Nt File System
- •Unit 4. Application Software
- •4.1 Software Basics
- •4.2 Using Software Systems
- •4.2.1 Lab: dos Commands
- •4.2.2 Lab: Macros
- •4.2.3 Lab: Embedding Application Objects
- •4.3 Batch Script Files
- •4.3.1 Advanced Command-Line Functions
- •Dos Command Syntax
- •Review of File System Commands
- •Wildcard Characters
- •Redirection and Piping
- •4.3.2 Batch File Commands
- •Batch Files
- •Commands
- •4.3.3 Lab: Creating a Batch File
- •Example of a Batch File
- •Example of a Batch File with Arguments
- •4.4 Databases
- •4.4.1 Lab: Searching the Library of Congress
- •4.5 Software Engineering
- •4.5.1 Issues in Large-Scale Software Development
- •The Software Development Process
- •Define or Redefine the Problem
- •Plan a Solution to the Problem
- •Code the Solution
- •Evaluate and Test Everything
- •4.5.2 Open Source Model
- •Free Software
- •4.5.3 Tools for Software Creation and Management
- •Editors
- •Compilers
- •Debuggers
- •Integrated Development Environments (idEs)
- •Unit 5. Network Systems
- •5.1 Internet Basics
- •5.1.1 Mime Types
- •5.1.2 Internet Languages
- •JavaScript
- •5.2 Local and Wide Area Networks
- •5.3 Communication Strategies
- •5.3.1 Client-Server Framework
- •5.3.2 Peer-to-Peer Connectivity
- •5.4 Data Transfer Technologies
- •5.5 Internet Architecture
- •5.5.1 Routers and tcp/ip
- •Internet Protocol
- •Routers
- •Transmission Control Protocol
- •5.5.2 Domain Name Service
- •Domain Name Service
- •5.5.3 Connectivity
- •Conventional Analog Phone Lines
- •Isdn: Integrated Services Digital Network
- •Cable Modem
- •XDsl: Digital Subscriber Line
- •Dedicated High Speed Lines
- •5.5.4 Internet Service Providers
- •Unit 6. Computer Security
- •6.1 Security Threats
- •6.1.1 Intruders: Who, Why, and How?
- •6.1.2 Identity Theft and Privacy Violation
- •Password Cracking
- •Packet sniffing
- •Social Engineering/Fraud
- •Spoofing
- •Port Scanning
- •6.1.3 Malicious Software
- •Trojan Horse
- •Prevention
- •Detection
- •Counter Measures
- •6.1.4 Denial of Service
- •Network Connectivity
- •Network Bandwidth
- •Other Resource Consumption Attacks
- •Distributed Denial of Service Attack
- •Prevention
- •6.2 Security Technologies
- •6.2.1 Encryption
- •Substitution Cipher
- •Transmitting the Key
- •Private Key Encryption Scheme
- •Public Key Encryption Scheme
- •Hybrid Encryption Schemes
- •6.2.2 Applications of Encryption
- •Hard Drives
- •Dvd Movies
- •Cellular Phones
- •6.2.3 Authentication
- •Strong Passwords
- •Smart Cards
- •Biometrics
- •Digital Signatures
- •Digital Certificates and Certificate Authorities
- •Ssl Protocol
- •6.3 Prevention, Detection, and Recovery
- •6.3.1 Firewall
- •Application Gateway
- •Packet Filter
- •Application Gateway versus Packet Filter
- •Intruder Attacks Prevented by Firewall
- •Setting up a Firewall
- •6.3.2 Intrusion Detection Tools
- •Intrusion Detection Systems
- •Network Monitoring Tools
- •Anti-Virus Software
- •6.3.3 Data Recovery
- •6.3.4 Summary of Security Tips
Redirection and Piping
The command-line processor provides some additional syntax that can be used to control where a program gets its input from (if not the keyboard), and where its output will go (if not to the display). This facility is called redirection. Most commands and programs are written to refer to the virtual devices known as Standard Input and Standard Output for I/O purposes. On a PC, the command processor coordinates with the operating system to redirect all data from the keyboard driver to the Standard Input virtual device and all data from the Standard Output virtual device to the display driver. Redirection allows the user to change this, by associating the virtual devices with some other location for data, such as a disk file. The left angle bracket ( < ) is used to redirect standard input, and the right angle bracket ( > ) is used to redirect standard output. For example, the command dir >files.txt causes the dir command to write its directory listing to the file FILES.TXT in the current directory.
Here are some more examples of the use of redirection:
List all files in the root folder to the printer instead of the display: dir c:\*.* >lpt:
Create a new text file called "temp.txt" containing a list of files in the root folder. (Note: Nothing will appear on the display.): dir c:\*.* >c:\temp.txt
Run "program.exe" and have it get data from the text file INPUT.DAT rather than the keyboard: c:\program.exe <c:\input.dat
Run "program.exe", have it get data from the text file "input.dat" rather than the keyboard, and display the output on the printer: c:\program.exe <c:\input.dat >lpt:
Another bit of syntax allows you to append output to the end of a file—or else create the file if it does not already exist. This is done using the >> redirection notation. For example, to append a listing of the root directory to the end of the file TEMP.TXT, do the following: dir c:\*.* >>c:\temp.txt. If you do this twice you will have two copies of the directory listing in the file, because the >> notation appends to the file rather than overwriting it.
Piping is a function of the command processor that links two commands together via redirection: the output of the first command becomes the input to the second. In order to accomplish this, Standard Output of the first command is redirected to a temporary file created by the command processor. The second command on the command line is then invoked by the command processor, which redirects its Standard Input to the temporary file that was just created. After the second command completes, the temporary file is deleted by the command processor.
To pipe data from one command to another as described above, the user separates the two commands on the command line with a vertical bar character ( | ). (The vertical bar character is sometimes pronounced, "pipe.") We have already seen an example of piping with the more command:
Display all the options of the dir command: dir /? | more
Another command commonly used with piping is the findstr command, which finds lines in a file that match a certain string, or pattern.
To display current environment variables whose names contain the string "HOME", do this: set | findstr /i home
The /i switch tells findstr to treat uppercase and lowercase letters as the same.
