- •Ssd2: Introduction to Computer Systems contents
- •Prerequisites
- •Course Textbook
- •Hardware/Software Requirements
- •The purpose of ssd2 is for students to
- •Students successfully completing ssd2 will be able to
- •1.1 Overview of Computer Systems
- •1.1.1 Components of a Computer System
- •Hardware System
- •Software System—Operating System Software and Application Software
- •Network System
- •1.2 Evolution of Computer Systems
- •1.2.1 Brief History
- •1200S—Manual Calculating Devices
- •1600S—Mechanical Calculators
- •1800S—Punched Cards
- •1940S—Vacuum Tubes
- •1950S—Transistors
- •1960S—Integrated Circuits
- •1970S to Present—Microprocessor
- •Pace of Advancement
- •1.2.2 Applications of Computer Systems
- •In Education Multimedia-Facilitated Learning
- •Simulation-Based Education
- •Intelligent Machine-Based Training
- •Interactive Learning
- •In Business Supply Chain Management
- •Project Management
- •Customer Relationship Management
- •Sales and Marketing Using Electronic Commerce
- •Manufacturing Research
- •In Entertainment Movies
- •Video Games
- •1.3 Data Representation in a Computer System
- •1.3.1 Bits and Bytes
- •Data Representation Using Binary Digits
- •Increasing Need for Bytes
- •1.3.2 Number Systems
- •Decimal
- •Hexadecimal
- •Learning Exercise
- •2.1 Processor and Memory
- •2.1.1 Processor Basics
- •Processor
- •Instruction Execution with the cpu
- •Performance: Factors and Measures
- •Types of Processors
- •2.1.2 Types of Memory
- •Cmos Memory
- •Summary
- •2.1.3 Lab: Benchmarking (Optional)
- •2.2 Peripherals
- •2.2.1 Connecting Peripherals
- •Expansion Slots and Cards
- •Usb and FireWire
- •Comparing Different Ports
- •2.2.2 Buses
- •2.2.3 Input/Output Devices
- •Input Devices
- •Cameras
- •Digital Camcorders
- •Scanners
- •Output Devices: Monitors and Projectors
- •Crt Monitors
- •Lcd Monitors
- •Projectors
- •Output Devices: Printers
- •Ink Printers
- •Dye-Sublimation Printers
- •Laser Printers
- •Comparing Printers
- •2.3 Storage Devices
- •2.3.1 Disk Controller Interfaces
- •Ide Interface
- •Eide Master/Slave
- •2.3.2 Mass Storage
- •How Mass Storage Devices Differ from ram
- •Disk Drive Reliability
- •Optical Media: cDs versus dvDs
- •Magnetic Media
- •Optical versus Magnetic
- •Solid State
- •Comparing Storages
- •2.4 Putting Together the Hardware Components
- •2.4.1 How Components Work Together
- •2.4.2 Lab: Researching a Computer System
- •2.4.3 Lab: Online Configuration
- •2.5 Improving Computer Performance
- •2.5.1 Moore's Law
- •2.5.2 Bottlenecks
- •Bottlenecks—Slowing a Process
- •Typical Bottlenecks
- •Eliminating Bottlenecks
- •2.5.3 Throughput and Latency
- •Unit 3. Operating System Software
- •3.1 Structure
- •3.1.1 Layers of Software
- •Layers and Process Management
- •Encapsulation and Abstraction
- •Layers of Software
- •3.1.2 The bios: Life at the Bottom
- •The Role of the bios
- •Changing bios Settings
- •3.1.3 Process Control
- •3.1.4 Lab: The Task Manager
- •3.2 Device Management and Configuration
- •3.2.1 Interrupt Handling
- •Interrupts
- •Interrupt Priority and Nested Interrupts
- •Traps and Faults
- •3.2.2 Hardware Attributes
- •Installing Drivers
- •Changing a Driver's Configuration
- •3.2.3 Configuration
- •3.2.4 Lab: Device Management
- •3.3 Resource Sharing
- •3.3.1 Virtual Memory
- •Managing Memory
- •Relocation
- •Virtual Memory
- •3.3.2 File and Printer Sharing
- •Printers
- •3.4 File Systems
- •3.4.1 File Organization
- •Folders
- •Shortcuts
- •File Names and Types
- •3.4.2 File Allocation Table and nt File System
- •Clusters and File Allocation Tables
- •Nt File System
- •Unit 4. Application Software
- •4.1 Software Basics
- •4.2 Using Software Systems
- •4.2.1 Lab: dos Commands
- •4.2.2 Lab: Macros
- •4.2.3 Lab: Embedding Application Objects
- •4.3 Batch Script Files
- •4.3.1 Advanced Command-Line Functions
- •Dos Command Syntax
- •Review of File System Commands
- •Wildcard Characters
- •Redirection and Piping
- •4.3.2 Batch File Commands
- •Batch Files
- •Commands
- •4.3.3 Lab: Creating a Batch File
- •Example of a Batch File
- •Example of a Batch File with Arguments
- •4.4 Databases
- •4.4.1 Lab: Searching the Library of Congress
- •4.5 Software Engineering
- •4.5.1 Issues in Large-Scale Software Development
- •The Software Development Process
- •Define or Redefine the Problem
- •Plan a Solution to the Problem
- •Code the Solution
- •Evaluate and Test Everything
- •4.5.2 Open Source Model
- •Free Software
- •4.5.3 Tools for Software Creation and Management
- •Editors
- •Compilers
- •Debuggers
- •Integrated Development Environments (idEs)
- •Unit 5. Network Systems
- •5.1 Internet Basics
- •5.1.1 Mime Types
- •5.1.2 Internet Languages
- •JavaScript
- •5.2 Local and Wide Area Networks
- •5.3 Communication Strategies
- •5.3.1 Client-Server Framework
- •5.3.2 Peer-to-Peer Connectivity
- •5.4 Data Transfer Technologies
- •5.5 Internet Architecture
- •5.5.1 Routers and tcp/ip
- •Internet Protocol
- •Routers
- •Transmission Control Protocol
- •5.5.2 Domain Name Service
- •Domain Name Service
- •5.5.3 Connectivity
- •Conventional Analog Phone Lines
- •Isdn: Integrated Services Digital Network
- •Cable Modem
- •XDsl: Digital Subscriber Line
- •Dedicated High Speed Lines
- •5.5.4 Internet Service Providers
- •Unit 6. Computer Security
- •6.1 Security Threats
- •6.1.1 Intruders: Who, Why, and How?
- •6.1.2 Identity Theft and Privacy Violation
- •Password Cracking
- •Packet sniffing
- •Social Engineering/Fraud
- •Spoofing
- •Port Scanning
- •6.1.3 Malicious Software
- •Trojan Horse
- •Prevention
- •Detection
- •Counter Measures
- •6.1.4 Denial of Service
- •Network Connectivity
- •Network Bandwidth
- •Other Resource Consumption Attacks
- •Distributed Denial of Service Attack
- •Prevention
- •6.2 Security Technologies
- •6.2.1 Encryption
- •Substitution Cipher
- •Transmitting the Key
- •Private Key Encryption Scheme
- •Public Key Encryption Scheme
- •Hybrid Encryption Schemes
- •6.2.2 Applications of Encryption
- •Hard Drives
- •Dvd Movies
- •Cellular Phones
- •6.2.3 Authentication
- •Strong Passwords
- •Smart Cards
- •Biometrics
- •Digital Signatures
- •Digital Certificates and Certificate Authorities
- •Ssl Protocol
- •6.3 Prevention, Detection, and Recovery
- •6.3.1 Firewall
- •Application Gateway
- •Packet Filter
- •Application Gateway versus Packet Filter
- •Intruder Attacks Prevented by Firewall
- •Setting up a Firewall
- •6.3.2 Intrusion Detection Tools
- •Intrusion Detection Systems
- •Network Monitoring Tools
- •Anti-Virus Software
- •6.3.3 Data Recovery
- •6.3.4 Summary of Security Tips
3.2.2 Hardware Attributes
Installing Drivers
Changing a Driver's Configuration
Installing Drivers
As previously discussed, each device must have a corresponding driver in the operating system to manage the commands, the transfer of data, and the error conditions that occur. Each operating system specifies an interface that a device driver must utilize. This means that for any particular device, it must have a corresponding driver for the operating system where it is intended to be used in order to be functional. Even versions of the same operating system may use an interface requiring a different driver. Also, a similar but different product from the same company will most likely require its own driver, because of some minor or major changes in how the device interacts with the software.
Drivers are supplied either with the operating system's distribution files, or individually from the manufacturer of the hardware device. At the time of a release of an operating system such as Windows, many of the most popular and well-known devices (printers, modems, scanners) will be tested and included with the release. However, less well-known brands or hardware products released later than the operating system will not be included. That is why each hardware device usually has an accompanying floppy or CD containing drivers for most of the operating systems available in the marketplace. If provided, a driver that comes packaged with a hardware device is always better to use than one that came with the operating system, since the driver packaged with the device is probably a more recent update containing better functionality, while correcting known errors.
The driver that accompanies a hardware device should allow you to use the device adequately. However, since products are shipped many months in advance of your purchase, there is high likelihood that more reported problems are corrected in the latest version of the driver on the company's Web site. Always check the company's Web site to see if a more recent version exists.
When you are installing a new hardware device under Windows, it most likely will be detected after a boot by the Plug and Play (PnP) control mechanism. If the device supports PnP, Windows should inform you that it found a new device and should ask you for the location of the driver. The driver can either be part of the Windows distribution itself (requiring you to use the Windows CD), a floppy, a CD, or a folder on the hard disk where you previously downloaded the driver from the Internet. If an appropriate driver is not found, Windows will be unable to use the device.
If you install a device and Windows does not recognize it, you must use the Add New Hardware wizard to install the device driver and have it recognized under Windows. This wizard allows you to have Windows search again for the device or for you to specify the device. There are a number of steps involved with manual installation, and the wizard attempts to lead you through entering the appropriate information. If you update a device driver, there is an "update button" associated with each device for you to perform this function manually. The process is similar to installing a driver for the first time, and the appropriate files must be on a disk to complete the update.
