- •Ssd2: Introduction to Computer Systems contents
- •Prerequisites
- •Course Textbook
- •Hardware/Software Requirements
- •The purpose of ssd2 is for students to
- •Students successfully completing ssd2 will be able to
- •1.1 Overview of Computer Systems
- •1.1.1 Components of a Computer System
- •Hardware System
- •Software System—Operating System Software and Application Software
- •Network System
- •1.2 Evolution of Computer Systems
- •1.2.1 Brief History
- •1200S—Manual Calculating Devices
- •1600S—Mechanical Calculators
- •1800S—Punched Cards
- •1940S—Vacuum Tubes
- •1950S—Transistors
- •1960S—Integrated Circuits
- •1970S to Present—Microprocessor
- •Pace of Advancement
- •1.2.2 Applications of Computer Systems
- •In Education Multimedia-Facilitated Learning
- •Simulation-Based Education
- •Intelligent Machine-Based Training
- •Interactive Learning
- •In Business Supply Chain Management
- •Project Management
- •Customer Relationship Management
- •Sales and Marketing Using Electronic Commerce
- •Manufacturing Research
- •In Entertainment Movies
- •Video Games
- •1.3 Data Representation in a Computer System
- •1.3.1 Bits and Bytes
- •Data Representation Using Binary Digits
- •Increasing Need for Bytes
- •1.3.2 Number Systems
- •Decimal
- •Hexadecimal
- •Learning Exercise
- •2.1 Processor and Memory
- •2.1.1 Processor Basics
- •Processor
- •Instruction Execution with the cpu
- •Performance: Factors and Measures
- •Types of Processors
- •2.1.2 Types of Memory
- •Cmos Memory
- •Summary
- •2.1.3 Lab: Benchmarking (Optional)
- •2.2 Peripherals
- •2.2.1 Connecting Peripherals
- •Expansion Slots and Cards
- •Usb and FireWire
- •Comparing Different Ports
- •2.2.2 Buses
- •2.2.3 Input/Output Devices
- •Input Devices
- •Cameras
- •Digital Camcorders
- •Scanners
- •Output Devices: Monitors and Projectors
- •Crt Monitors
- •Lcd Monitors
- •Projectors
- •Output Devices: Printers
- •Ink Printers
- •Dye-Sublimation Printers
- •Laser Printers
- •Comparing Printers
- •2.3 Storage Devices
- •2.3.1 Disk Controller Interfaces
- •Ide Interface
- •Eide Master/Slave
- •2.3.2 Mass Storage
- •How Mass Storage Devices Differ from ram
- •Disk Drive Reliability
- •Optical Media: cDs versus dvDs
- •Magnetic Media
- •Optical versus Magnetic
- •Solid State
- •Comparing Storages
- •2.4 Putting Together the Hardware Components
- •2.4.1 How Components Work Together
- •2.4.2 Lab: Researching a Computer System
- •2.4.3 Lab: Online Configuration
- •2.5 Improving Computer Performance
- •2.5.1 Moore's Law
- •2.5.2 Bottlenecks
- •Bottlenecks—Slowing a Process
- •Typical Bottlenecks
- •Eliminating Bottlenecks
- •2.5.3 Throughput and Latency
- •Unit 3. Operating System Software
- •3.1 Structure
- •3.1.1 Layers of Software
- •Layers and Process Management
- •Encapsulation and Abstraction
- •Layers of Software
- •3.1.2 The bios: Life at the Bottom
- •The Role of the bios
- •Changing bios Settings
- •3.1.3 Process Control
- •3.1.4 Lab: The Task Manager
- •3.2 Device Management and Configuration
- •3.2.1 Interrupt Handling
- •Interrupts
- •Interrupt Priority and Nested Interrupts
- •Traps and Faults
- •3.2.2 Hardware Attributes
- •Installing Drivers
- •Changing a Driver's Configuration
- •3.2.3 Configuration
- •3.2.4 Lab: Device Management
- •3.3 Resource Sharing
- •3.3.1 Virtual Memory
- •Managing Memory
- •Relocation
- •Virtual Memory
- •3.3.2 File and Printer Sharing
- •Printers
- •3.4 File Systems
- •3.4.1 File Organization
- •Folders
- •Shortcuts
- •File Names and Types
- •3.4.2 File Allocation Table and nt File System
- •Clusters and File Allocation Tables
- •Nt File System
- •Unit 4. Application Software
- •4.1 Software Basics
- •4.2 Using Software Systems
- •4.2.1 Lab: dos Commands
- •4.2.2 Lab: Macros
- •4.2.3 Lab: Embedding Application Objects
- •4.3 Batch Script Files
- •4.3.1 Advanced Command-Line Functions
- •Dos Command Syntax
- •Review of File System Commands
- •Wildcard Characters
- •Redirection and Piping
- •4.3.2 Batch File Commands
- •Batch Files
- •Commands
- •4.3.3 Lab: Creating a Batch File
- •Example of a Batch File
- •Example of a Batch File with Arguments
- •4.4 Databases
- •4.4.1 Lab: Searching the Library of Congress
- •4.5 Software Engineering
- •4.5.1 Issues in Large-Scale Software Development
- •The Software Development Process
- •Define or Redefine the Problem
- •Plan a Solution to the Problem
- •Code the Solution
- •Evaluate and Test Everything
- •4.5.2 Open Source Model
- •Free Software
- •4.5.3 Tools for Software Creation and Management
- •Editors
- •Compilers
- •Debuggers
- •Integrated Development Environments (idEs)
- •Unit 5. Network Systems
- •5.1 Internet Basics
- •5.1.1 Mime Types
- •5.1.2 Internet Languages
- •JavaScript
- •5.2 Local and Wide Area Networks
- •5.3 Communication Strategies
- •5.3.1 Client-Server Framework
- •5.3.2 Peer-to-Peer Connectivity
- •5.4 Data Transfer Technologies
- •5.5 Internet Architecture
- •5.5.1 Routers and tcp/ip
- •Internet Protocol
- •Routers
- •Transmission Control Protocol
- •5.5.2 Domain Name Service
- •Domain Name Service
- •5.5.3 Connectivity
- •Conventional Analog Phone Lines
- •Isdn: Integrated Services Digital Network
- •Cable Modem
- •XDsl: Digital Subscriber Line
- •Dedicated High Speed Lines
- •5.5.4 Internet Service Providers
- •Unit 6. Computer Security
- •6.1 Security Threats
- •6.1.1 Intruders: Who, Why, and How?
- •6.1.2 Identity Theft and Privacy Violation
- •Password Cracking
- •Packet sniffing
- •Social Engineering/Fraud
- •Spoofing
- •Port Scanning
- •6.1.3 Malicious Software
- •Trojan Horse
- •Prevention
- •Detection
- •Counter Measures
- •6.1.4 Denial of Service
- •Network Connectivity
- •Network Bandwidth
- •Other Resource Consumption Attacks
- •Distributed Denial of Service Attack
- •Prevention
- •6.2 Security Technologies
- •6.2.1 Encryption
- •Substitution Cipher
- •Transmitting the Key
- •Private Key Encryption Scheme
- •Public Key Encryption Scheme
- •Hybrid Encryption Schemes
- •6.2.2 Applications of Encryption
- •Hard Drives
- •Dvd Movies
- •Cellular Phones
- •6.2.3 Authentication
- •Strong Passwords
- •Smart Cards
- •Biometrics
- •Digital Signatures
- •Digital Certificates and Certificate Authorities
- •Ssl Protocol
- •6.3 Prevention, Detection, and Recovery
- •6.3.1 Firewall
- •Application Gateway
- •Packet Filter
- •Application Gateway versus Packet Filter
- •Intruder Attacks Prevented by Firewall
- •Setting up a Firewall
- •6.3.2 Intrusion Detection Tools
- •Intrusion Detection Systems
- •Network Monitoring Tools
- •Anti-Virus Software
- •6.3.3 Data Recovery
- •6.3.4 Summary of Security Tips
Projectors
Enable images on the computer screen to be magnified and projected onto a bigger screen. Modern projectors use two types of technologies, the LCD system (also used in monitors as discussed above) and the digital light processing (DLP) system. Using the LCD system, images are projected as light shines through a layer of liquid crystal cells. On the other hand, DLP system uses tiny mirrors that reside on a special microchip called the Digital Micromirror Device (DMD). Images created using DLP are smoother and have better contrast than those created using LCD.
Output Devices: Printers
There are a number of types of printers that perform a variety of functions. This section compares and contrasts the four major types of printers.
Ink Printers
A wide variety of ink printers is available today. They use ink-jet, bubble-jet, and other technologies, but in the end, they all perform the same function: spraying and dyeing the page with color. Originally, ink printers came in black only; now they are hard to find. Color dyes have become cheaper and easier to produce, and "photo-quality" has become a major selling point with ink printers. These printers are rated according to their resolution and color depth. Color depth is the range of colors that any given drop may represent. Unlike monitor resolution, which is a measurement of pixels across and down the screen, printer resolution is measured in dpi, the number of dots per inch (horizontally or vertically) that a printer can place on a page. Sometimes the dpi is the same both horizontally and vertically, such as 1200 dpi. Other times, the horizontal and vertical dpi differ—as in1440x720 dpi.
Printers usually use a four-color process, CMYK (cyan, magenta, yellow, and black), to produce various colors. Sometimes a three-color process is used, excluding the color black because it can be produced by mixing the other three colors. In a typical printer, each dot is composed of one or two drops of ink, giving about 15 colors.
Multiple drops of colors can also be placed on a single dot to produce more colors. Hewlett-Packard attempts to achieve better quality by increasing the color depth in its printers by layering multiple color drops within a single dot to create better image quality. Read the article on HP's color layering technology.
Dye-Sublimation Printers
Dye-sublimation printers are used mainly to print high-quality images like those at a photo lab. Solid dyes consisting of the four colors, cyan, magenta, yellow, and black are used. However, in contrast to ink printers, instead of using multiple drops of CMYK colors to create a specific color, continuous-tone imaging is possible. This means that varying mixtures of CMYK color dyes can be used to represent different colors, achieving photo-like quality. The print head heats and vaporizes the dyes to allow them to permeate the glossy surface of the printing paper before they solidify. In dye-sublimation, printing colors are infused with the paper.
Laser Printers
Laser printers use toner cartridges that contain toner, a colored powder. The laser printer uses a laser beam to charge the image of the page onto a photoelectric drum. When the paper runs through the printer in between the drum and the toner cartridge, the electro-magnetic charge of the drum picks up the toner and then transfers it to the paper. A heat and pressure system then fuses the powder to the page.
