Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
AG1 / Konev-Linear_Algebra_Vector_Algebra_and_Analytical_Geome.pdf
Скачиваний:
39
Добавлен:
25.02.2016
Размер:
1.37 Mб
Скачать

Matrices

 

 

 

 

 

 

 

5) Find A2002 , if

1

1

 

 

 

 

A =

.

 

 

 

 

Solution:

0

1

 

 

 

 

 

1 1 1 1 1 2

 

 

A2 = A A =

 

 

=

,

 

 

0 1

0 1 0 1

3

2

1 1 1 2 1 3

A

= A A

=

 

 

=

,

 

 

0 1 0 1

0 1

4

3

 

1 1

1 3

1 4

A

= A A

=

 

 

 

=

, and so on.

 

 

 

0 1

0 1

0 1

 

A

2002

1

2002

 

 

 

=

 

1

.

 

 

 

 

0

 

 

 

1.3. Types of Matrices

In a square matrix A =||ai, j ||, the elements ai,i , with i = 1, 2, 3, ... , are called the diagonal matrix elements. The set of the entries ai,i forms the leading (or principle) diagonal of the matrix.

A square matrix A =||ai, j ||

is called a

diagonal matrix, if off-diagonal

elements are equal to zero or, symbolically,

ai, j

= 0 for all i j :

 

a

0

L

0

 

 

 

1,1

a2,2

 

0

 

A =

 

0

L

 

 

M

L

L

M

.

 

 

 

 

 

 

 

 

 

 

0

0

 

 

 

 

 

L an,n

Identity matrices I are square matrices such that

I A = A

and

A I = A .

Compare these matrix equalities with the corresponding property of real numbers: 1 a = a and a 1 = a .

Theorem: Any identity matrix I is a diagonal matrix whose diagonal elements are equal to unity:

1

0

L 0

 

 

0

1

L 0

 

 

 

I =

M

L

L M

.

 

 

 

 

 

 

0

0

L 1

 

 

 

This theorem is proved in the following section.

12

Matrices

Examples:

1) It is not difficult to verify that

1 0

a b a b

and

a b

 

1 0 a b

 

0 1

 

 

 

 

=

 

 

 

 

 

 

0 1

=

.

 

c d

c d

 

 

c d

 

c d

Therefore, 1

0

is the identity matrix of the second order.

 

 

 

0

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2) Let A =||ai, j

||

be any 2 ×3 matrix. Then

 

 

 

 

 

 

1

0

a1,1

a1,2

 

a1,3

 

a1,1

a1,2

a1,3

 

and

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

 

 

0

1

 

 

 

a2,2

 

a2,3

 

 

 

a2,2

a2,3

 

 

 

a2,1

 

 

a2,1

 

 

 

a

a

 

a

 

1

0

 

0

 

 

a

 

a

 

 

 

 

 

 

 

a

 

 

 

 

1,1

 

1,2

 

1,3

 

0 1 0

1,1

1,2

 

1,3

 

 

 

 

a2,2

 

 

=

 

a2,2

 

 

.

 

a2,1

a2,3

 

0

0

 

 

a2,1

a2,3

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

A matrix is called a zero-matrix (0-matrix), if it consists of only zero elements: ai, j = 0 for each {i, j}.

In a short form, a zero-matrix is written as 0:

0

L

0

 

 

 

 

 

 

0 ≡ M

O

M

.

 

0

L

0

 

 

 

By the definition of a zero-matrix,

0 A = A 0 = 0

and

A +0 = A,

that is, a zero-matrix has just the same properties as the number zero.

However, if the product of two matrices is equal to zero, it does not mean that at least one of the matrices is a zero-matrix.

For instance, both matrices,

0

1

and

3

2

 

A =

0

4

 

B =

0

0

, are non-zero

 

 

 

 

 

 

matrices, while their product is a zero-matrix:

0

1 3

2 0

0

AB =

0

4

 

 

0

 

=

0

0

.

 

 

0

 

 

 

 

 

 

 

13

 

 

 

 

 

 

Matrices

A square matrix has a triangular form, if all its elements above or below the leading diagonal are zeros:

 

all

 

ai, j = 0 for

i > j or for

 

i < j.

 

Examples:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Upper-triangular matrix

 

Lower-triangular matrix

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

a

5

 

 

 

1

0

0

 

A =

 

0

b c

 

 

 

 

4

7

 

 

 

 

 

B =

 

0

 

 

 

0

0

4

 

 

 

2 0

 

 

 

 

 

 

 

3

Given an m ×n matrix A =|| ai, j ||, the transpose of A is the n ×m matrix AT =|| a j,i || obtained from A by interchanging its rows and columns.

This means that the rows of the matrix A are the columns of the matrix AT ; and vise versa:

( AT )i, j = a j,i .

 

 

 

 

 

 

 

2

7

 

 

 

2

1

3

 

 

1

0

 

is

T

For instance, the transpose of A =

 

A

=

7

0

4

.

 

3

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A square matrix A =||ai, j || is called a symmetric matrix, if A is equal to the

transpose of A:

A = AT

ai, j = a j,i .

 

 

The examples below illustrate the structure of symmetric matrices:

a

c

a

d

e

 

 

 

b

f

 

= ST .

R =

= RT and

S = d

 

c

b

 

f

c

 

 

 

 

e

 

 

A square matrix A =||ai, j || is called a skew-symmetric matrix, if A is equal

to the opposite of its transpose:

ai, j = −a j,i .

The example below shows the structure of a skew-symmetric matrix:

0

3

1

 

 

 

3

0

2

 

= −AT .

A =

 

 

1

2

0

 

 

 

 

 

 

 

14

 

 

 

Matrices

1.4. Kronecker Delta Symbol

The Kronecker delta symbol is defined by the formula

1,

if

i = j,

δi, j =

if

i j.

0,

The delta symbol cancels summation over one of the indexes in such expressions as

aiδi, j ,

a jδi, j ,

i

 

j

ai, jδi, j

,

ai, jδi, j , and so on.

i

 

j

For instance, the sum aiδi, j

may

contain only one nonzero term

i

a jδ j, j = a j , while all the other terms are equal to zero, because of δi, j = 0 for any i j .

 

 

 

 

n

 

 

 

If

k j n , then aiδi, j = a j .

 

 

 

 

 

i =k

n

 

 

 

 

 

 

 

 

If j < k

or j > n ,

then

aiδi, j = 0.

 

 

 

 

 

 

i =k

 

 

 

 

n

 

 

 

Likewise, if k i n , then

a jδi, j

= ai .

 

 

 

 

 

j =k

 

 

 

 

 

 

n

 

 

 

Otherwise, if i < k or i > n ,

then a jδi, j

= 0 .

 

 

 

 

j =k

 

 

 

Examples:

 

 

 

 

 

100

 

 

 

 

 

 

i2δi,3

=12 0 +22 0

+32 1+42 0 +K= 9 .

 

 

i =1

 

 

 

5

 

20

 

 

 

 

2k δk ,10

= 210 =1024 ,

however 2k δk ,10

= 0 .

k =1

 

 

 

k =1

 

Now we can easily prove the above-mentioned theorem of identity matrix:

1

0

L 0

 

 

0

1

L 0

 

 

 

I =||δi, j ||=

M

L

O M

.

 

 

 

 

 

 

0

0

L 1

 

 

 

 

15

 

 

 

Соседние файлы в папке AG1