Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

AG1 / briefcourseinanal-geom-Yefimov

.pdf
Скачиваний:
11
Добавлен:
25.02.2016
Размер:
10.33 Mб
Скачать

</)>

z

ro^

B]<OU

160228 >m

>*

^S

z

^g

OSMANIA UNIVERSITY LIBRARY

>5T

/6

 

 

Call No. ^

_

.

Accession No.

Author

Title

This book should be returnedion or before the^date last marked below.

H.B. E*HMOB

KPATKHfi KYPC

AHAJIHTHMECKOfi FEOMETPHM

FOCy/lAPCTBEHHOE 4>H3HKO-MATEMATH4ECKOft ^HTEPATVPbl

M o c K B a

N. YEFIMOV

A Brief Course

in

Analytic Geometry

TRANSLATED FROM THE RUSSIAN

by O. S R O K A

PEACE PUBLISHERS

MOSCOW

Written by Professor N. Yefimov, Dr. Phys. Math. Sc., this

book presents, in concise form, the theoretical foundations of plane

and solid analytic geometry. Also, an elementary outline of the

theory of determinants is given in the Appendix.

The textbook is intended for students of higher educational institutions and for engineers engaged in the field of quadric

surface design.

The book is illustrated with 122 drawings.

CONTENTS

 

 

 

 

 

Part

One

 

 

 

 

 

 

 

 

 

 

 

PLANE ANALYTIC

GEOMETRY

 

 

 

 

Chapter 1.

Coordinates on a Straight Line

and

in

a Plane

 

 

11

1.

An Axis and Segments of an Axis

 

 

 

 

 

 

11

2.

Coordinates on a Line. The Number

Axis

 

 

 

14

3.

Rectangular

Cartesian Coordinates

in

a

Plane. A Note

on Ob-

 

 

lique

Cartesian Coordinates

 

 

 

 

 

 

 

 

16

4.

Polar

Coordinates

 

 

 

 

 

 

 

 

 

20

Chapter 2.

Elementary

Problems of Plane

Analytic Geometry

 

 

23

5.

Projection of

a Line Segment. Distance Between Two Points . .

23

6.

Calculation of the Area of a Triangle

 

 

 

 

28

7.

Division of a Line Segment in a Given Ratio

 

 

of Axes

30

8.

Transformation of

Cartesian Coordinates

by Translation

35

9.

Transformation of

Rectangular Cartesian

Coordinates by Rotation

 

 

of

Axes

 

 

 

 

 

 

 

 

 

 

36

10.

Transformation of

Rectangular

Cartesian

Coordinates

by

Change

 

 

of Origin and Rotation of Axes

 

 

 

 

 

 

 

38

Chapter 3. The Equation of a Curve

 

 

 

 

 

 

 

.

41

11.

The Concept of the Equation of

a

Curve. Examples

of

Curves

 

 

Represented by Equations

 

 

 

 

 

 

 

 

41

12.

Examples of Deriving the Equation of a Given Curve

 

48

13.

The Problem of the Intersection

of

Two Curves

 

 

50

14. Parametric Equations of a Curve

 

 

 

 

 

 

51

15.

Algebraic Curves

 

 

 

 

 

 

 

 

- .

52

Chapter 4. Curves of the First Order

 

 

 

 

 

 

 

 

55

16. The Slope of a Straight Line

 

 

 

 

 

 

 

 

55

17.

The Slope-intercept Equation of a Straight Line

 

 

56

18.

Calculation of the Angle Between Two Straight Lines. Conditions

 

 

for the Parallelism and Perpendicularity of Two Straight

Lines .

59

19.

The Straight Line As the Curve

of

the First

Order. The

General

 

 

Equation of the Straight Line

 

Degree. The

 

 

 

61

20.

Incomplete Equations of the First

Intercept Equation

63

 

of

a

Straight Line

 

 

 

 

 

 

 

 

21. Discussion of a System of Equations Representing Two Straight

 

Lines

 

 

 

 

 

 

 

 

 

 

.65

22.

The Normal Equation of a Straight

Line. The Problem

of Cal-

68

 

culating the Distance of a Point

from

a

Straight Line

 

23. The Equation of a Pencil of Lines

 

 

 

 

 

 

71

Chapter 5. Geometric Properties of Curves

of

the

Second Order

 

75

24.

The Ellipse. Definition of the Ellipse

and Derivation of

Its

Canon-

 

 

ical

Equation

 

 

 

 

 

 

 

 

 

 

75

6

 

 

 

 

 

 

Contents

 

 

 

 

 

 

 

 

 

 

 

25.

Discussion of the Shape of the Ellipse

 

 

 

 

 

 

 

 

79

26.

The Eccentricity of the Ellipse

 

 

 

 

 

 

 

 

 

 

 

81

27.

Rational Expressions for Focal Radii of the Ellipse

 

 

 

 

82

28.

Point-by-point

Construction of the

Ellipse.

 

The Parametric

 

83

 

Equations

of

the Ellipse

 

 

 

 

 

 

 

 

 

 

 

 

29.

The Ellipse as the Projection of

a

Circle on a Plane. The

Ellipse

 

84

 

as the Section of a Circular Cylinder

by a

Plane

 

 

 

 

 

30.

The Hyperbola. Definition of the

Hyperbola

and

Derivation

of

 

87

 

Its

Canonical

Equation

 

 

 

 

 

 

 

 

 

 

 

 

 

31. Discussion of the Shape of the Hyperbola

 

 

 

 

 

 

.91

32. The Eccentricity of the Hyperbola

 

 

 

 

 

 

 

 

 

 

97

33. Rational Expressions for Focal Radii of the Hyperbola

 

 

 

 

98

34.

The Directrices

of

the

Ellipse and

Hyperbola

 

 

 

 

 

 

 

99

35. The Parabola. Derivation of the Canonical Equation of the Pa-

 

 

rabola

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.103

36.

Discussion of the Shape of the Parabola

 

and

Parabola

 

 

105

37.

The Polar Equation of

the

Ellipse,

Hyperbola

.

.

107

38. Diameters of Curves of the Second Order

 

 

 

 

 

 

 

 

109

39.

The Optical

Properties

of

the

Ellipse,

Hyperbola

and

Parabola

 

114

40. The Ellipse, Hyperbola and Parabola as Conic Sections

 

.... 115

Chapter 6. Transformation of Equations by Change of Coordinates

 

.... 116

41.

Examples

of

Reducing

the General Equation of a Second-Order

 

 

 

Curve to

Canonical

Form

 

 

 

 

 

 

 

 

 

 

 

 

116

42.

The Hyperbola

as

the

Inverse

Proportionality

Graph.

The

Pa-

 

 

 

rabola as

the Graph of a Quadratic Function

 

 

 

 

 

 

 

125

 

 

 

 

 

 

Part

Two

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SOLID

ANALYTIC GEOMETRY

 

 

 

 

 

 

 

 

 

Chapter 7. Some Elementary Problems of Solid Analytic Geometry

. .

. .

131

43.

Rectangular

Cartesian

Coordinates

in

Space

 

 

 

 

 

 

 

131

44. The Concept

of

a Free

Vector. The

Projection

of

a

Vector on an

 

134

 

Axis

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

45. The Projections of a Vector on the Coordinate Axes

 

 

 

 

138

46.

Direction

Cosines

Two

 

 

 

 

 

 

 

 

 

 

 

.141

47.

Distance

between

Points.

Division of

a

Line Segment

in

 

 

 

a

Given

Ratio

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

142

Chapter 8. Linear Operations on Vectors

 

 

 

 

 

 

 

 

 

 

 

143

48. Definitions of Linear Operations

 

 

 

 

 

 

 

 

 

 

 

143

49. Basic Properties of Linear Operations

 

 

 

 

 

 

 

 

 

144

50.

The Vector Difference

 

 

 

 

 

 

 

 

 

 

 

 

 

147

51.

Fundamental Theorems

on

Projections

 

 

 

 

 

 

 

. .

149

52. Resolution of Vectors into Components

 

 

 

 

 

 

 

 

152

Chapter 9. The Scalar Product of Vectors

 

 

 

 

 

 

 

 

 

 

 

157

53. The Scalar Product and Its Basic Properties

 

 

 

 

 

 

 

 

157

54.

Representation

of

the

Scalar Product in Terms of the

 

Coordi-

 

 

 

nates of the Vector Factors

 

 

 

 

 

 

 

 

 

 

 

160

Chapter 10. The Vector and Triple Scalar Products of

Vectors

 

 

 

 

163

55.

The Vector Product and Its Basic

Properties

 

 

 

 

 

 

 

163

56.

Representation

of the Vector Product in

Terms of

the Coordinates

 

 

 

of

the Vector

Factors

 

 

 

 

 

 

 

 

 

 

 

 

 

170

Соседние файлы в папке AG1