AG1 / briefcourseinanal-geom-Yefimov
.pdf</)>  | 
	z  | 
ro^  | 
|
B]<OU  | 
	160228 >m  | 
>*  | 
	^S  | 
z  | 
	^g  | 
OSMANIA UNIVERSITY LIBRARY
>5T  | 
	/6  | 
	
  | 
	
  | 
Call No. ^  | 
	_  | 
	.  | 
	Accession No.  | 
Author
Title
This book should be returnedion or before the^date last marked below.
H.B. E*HMOB
KPATKHfi KYPC
AHAJIHTHMECKOfi FEOMETPHM
FOCy/lAPCTBEHHOE 4>H3HKO-MATEMATH4ECKOft ^HTEPATVPbl
M o c K B a
N. YEFIMOV
A Brief Course
in
Analytic Geometry
TRANSLATED FROM THE RUSSIAN
by O. S R O K A
PEACE PUBLISHERS
MOSCOW
Written by Professor N. Yefimov, Dr. Phys. Math. Sc., this
book presents, in concise form, the theoretical foundations of plane
and solid analytic geometry. Also, an elementary outline of the
theory of determinants is given in the Appendix.
The textbook is intended for students of higher educational institutions and for engineers engaged in the field of quadric
surface design.
The book is illustrated with 122 drawings.
CONTENTS
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	Part  | 
	One  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
|
  | 
	
  | 
	
  | 
	
  | 
	PLANE ANALYTIC  | 
	GEOMETRY  | 
	
  | 
	
  | 
	
  | 
	
  | 
|||||
Chapter 1.  | 
	Coordinates on a Straight Line  | 
	and  | 
	in  | 
	a Plane  | 
	
  | 
	
  | 
	11  | 
|||||||
1.  | 
	An Axis and Segments of an Axis  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	11  | 
||||||
2.  | 
	Coordinates on a Line. The Number  | 
	Axis  | 
	
  | 
	
  | 
	
  | 
	14  | 
||||||||
3.  | 
	Rectangular  | 
	Cartesian Coordinates  | 
	in  | 
	a  | 
	Plane. A Note  | 
	on Ob-  | 
	
  | 
|||||||
  | 
	lique  | 
	Cartesian Coordinates  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	16  | 
|||
4.  | 
	Polar  | 
	Coordinates  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	20  | 
||
Chapter 2.  | 
	Elementary  | 
	Problems of Plane  | 
	Analytic Geometry  | 
	
  | 
	
  | 
	23  | 
||||||||
5.  | 
	Projection of  | 
	a Line Segment. Distance Between Two Points . .  | 
	23  | 
|||||||||||
6.  | 
	Calculation of the Area of a Triangle  | 
	
  | 
	
  | 
	
  | 
	
  | 
	28  | 
||||||||
7.  | 
	Division of a Line Segment in a Given Ratio  | 
	
  | 
	
  | 
	of Axes  | 
	30  | 
|||||||||
8.  | 
	Transformation of  | 
	Cartesian Coordinates  | 
	by Translation  | 
	35  | 
||||||||||
9.  | 
	Transformation of  | 
	Rectangular Cartesian  | 
	Coordinates by Rotation  | 
	
  | 
||||||||||
  | 
	of  | 
	Axes  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	36  | 
|
10.  | 
	Transformation of  | 
	Rectangular  | 
	Cartesian  | 
	Coordinates  | 
	by  | 
	Change  | 
	
  | 
|||||||
  | 
	of Origin and Rotation of Axes  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	38  | 
|||||
Chapter 3. The Equation of a Curve  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	.  | 
	41  | 
|||||
11.  | 
	The Concept of the Equation of  | 
	a  | 
	Curve. Examples  | 
	of  | 
	Curves  | 
	
  | 
||||||||
  | 
	Represented by Equations  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	41  | 
||||
12.  | 
	Examples of Deriving the Equation of a Given Curve  | 
	
  | 
	48  | 
|||||||||||
13.  | 
	The Problem of the Intersection  | 
	of  | 
	Two Curves  | 
	
  | 
	
  | 
	50  | 
||||||||
14. Parametric Equations of a Curve  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	51  | 
|||||||
15.  | 
	Algebraic Curves  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	- .  | 
	52  | 
|||
Chapter 4. Curves of the First Order  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	55  | 
|||||
16. The Slope of a Straight Line  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	55  | 
|||||
17.  | 
	The Slope-intercept Equation of a Straight Line  | 
	
  | 
	
  | 
	56  | 
||||||||||
18.  | 
	Calculation of the Angle Between Two Straight Lines. Conditions  | 
	
  | 
||||||||||||
  | 
	for the Parallelism and Perpendicularity of Two Straight  | 
	Lines .  | 
	59  | 
|||||||||||
19.  | 
	The Straight Line As the Curve  | 
	of  | 
	the First  | 
	Order. The  | 
	General  | 
	
  | 
||||||||
  | 
	Equation of the Straight Line  | 
	
  | 
	Degree. The  | 
	
  | 
	
  | 
	
  | 
	61  | 
|||||||
20.  | 
	Incomplete Equations of the First  | 
	Intercept Equation  | 
	63  | 
|||||||||||
  | 
	of  | 
	a  | 
	Straight Line  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
|||
21. Discussion of a System of Equations Representing Two Straight  | 
	
  | 
|||||||||||||
Lines  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	.65  | 
|||
22.  | 
	The Normal Equation of a Straight  | 
	Line. The Problem  | 
	of Cal-  | 
	68  | 
||||||||||
  | 
	culating the Distance of a Point  | 
	from  | 
	a  | 
	Straight Line  | 
	
  | 
|||||||||
23. The Equation of a Pencil of Lines  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	71  | 
|||||||
Chapter 5. Geometric Properties of Curves  | 
	of  | 
	the  | 
	Second Order  | 
	
  | 
	75  | 
|||||||||
24.  | 
	The Ellipse. Definition of the Ellipse  | 
	and Derivation of  | 
	Its  | 
	Canon-  | 
	
  | 
|||||||||
  | 
	ical  | 
	Equation  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	75  | 
|
6  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	Contents  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
||
25.  | 
	Discussion of the Shape of the Ellipse  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	79  | 
||||||||||
26.  | 
	The Eccentricity of the Ellipse  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	81  | 
|||||||
27.  | 
	Rational Expressions for Focal Radii of the Ellipse  | 
	
  | 
	
  | 
	
  | 
	
  | 
	82  | 
||||||||||||||
28.  | 
	Point-by-point  | 
	Construction of the  | 
	Ellipse.  | 
	
  | 
	The Parametric  | 
	
  | 
	83  | 
|||||||||||||
  | 
	Equations  | 
	of  | 
	the Ellipse  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
|||||
29.  | 
	The Ellipse as the Projection of  | 
	a  | 
	Circle on a Plane. The  | 
	Ellipse  | 
	
  | 
	84  | 
||||||||||||||
  | 
	as the Section of a Circular Cylinder  | 
	by a  | 
	Plane  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
||||||||||||
30.  | 
	The Hyperbola. Definition of the  | 
	Hyperbola  | 
	and  | 
	Derivation  | 
	of  | 
	
  | 
	87  | 
|||||||||||||
  | 
	Its  | 
	Canonical  | 
	Equation  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
||||
31. Discussion of the Shape of the Hyperbola  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	.91  | 
|||||||||||||
32. The Eccentricity of the Hyperbola  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	97  | 
|||||||||
33. Rational Expressions for Focal Radii of the Hyperbola  | 
	
  | 
	
  | 
	
  | 
	
  | 
	98  | 
|||||||||||||||
34.  | 
	The Directrices  | 
	of  | 
	the  | 
	Ellipse and  | 
	Hyperbola  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	99  | 
|||||||
35. The Parabola. Derivation of the Canonical Equation of the Pa-  | 
	
  | 
	
  | 
||||||||||||||||||
rabola  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	.103  | 
|||
36.  | 
	Discussion of the Shape of the Parabola  | 
	
  | 
	and  | 
	Parabola  | 
	
  | 
	
  | 
	105  | 
|||||||||||||
37.  | 
	The Polar Equation of  | 
	the  | 
	Ellipse,  | 
	Hyperbola  | 
	.  | 
	.  | 
	107  | 
|||||||||||||
38. Diameters of Curves of the Second Order  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	109  | 
|||||||||||
39.  | 
	The Optical  | 
	Properties  | 
	of  | 
	the  | 
	Ellipse,  | 
	Hyperbola  | 
	and  | 
	Parabola  | 
	
  | 
	114  | 
||||||||||
40. The Ellipse, Hyperbola and Parabola as Conic Sections  | 
	
  | 
	.... 115  | 
||||||||||||||||||
Chapter 6. Transformation of Equations by Change of Coordinates  | 
	
  | 
	.... 116  | 
||||||||||||||||||
41.  | 
	Examples  | 
	of  | 
	Reducing  | 
	the General Equation of a Second-Order  | 
	
  | 
	
  | 
||||||||||||||
  | 
	Curve to  | 
	Canonical  | 
	Form  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	116  | 
||||
42.  | 
	The Hyperbola  | 
	as  | 
	the  | 
	Inverse  | 
	Proportionality  | 
	Graph.  | 
	The  | 
	Pa-  | 
	
  | 
	
  | 
||||||||||
  | 
	rabola as  | 
	the Graph of a Quadratic Function  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	125  | 
||||||||||
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	Part  | 
	Two  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
||
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	SOLID  | 
	ANALYTIC GEOMETRY  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
|||||
Chapter 7. Some Elementary Problems of Solid Analytic Geometry  | 
	. .  | 
	. .  | 
	131  | 
|||||||||||||||||
43.  | 
	Rectangular  | 
	Cartesian  | 
	Coordinates  | 
	in  | 
	Space  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	131  | 
|||||||
44. The Concept  | 
	of  | 
	a Free  | 
	Vector. The  | 
	Projection  | 
	of  | 
	a  | 
	Vector on an  | 
	
  | 
	134  | 
|||||||||||
  | 
	Axis  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
||
45. The Projections of a Vector on the Coordinate Axes  | 
	
  | 
	
  | 
	
  | 
	
  | 
	138  | 
|||||||||||||||
46.  | 
	Direction  | 
	Cosines  | 
	Two  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	.141  | 
|||||
47.  | 
	Distance  | 
	between  | 
	Points.  | 
	Division of  | 
	a  | 
	Line Segment  | 
	in  | 
	
  | 
	
  | 
|||||||||||
  | 
	a  | 
	Given  | 
	Ratio  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	142  | 
|
Chapter 8. Linear Operations on Vectors  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	143  | 
||||||||
48. Definitions of Linear Operations  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	143  | 
||||||||
49. Basic Properties of Linear Operations  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	144  | 
||||||||||
50.  | 
	The Vector Difference  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	147  | 
|||||
51.  | 
	Fundamental Theorems  | 
	on  | 
	Projections  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	. .  | 
	149  | 
||||||||
52. Resolution of Vectors into Components  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	152  | 
|||||||||||
Chapter 9. The Scalar Product of Vectors  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	157  | 
||||||||
53. The Scalar Product and Its Basic Properties  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	157  | 
|||||||||||
54.  | 
	Representation  | 
	of  | 
	the  | 
	Scalar Product in Terms of the  | 
	
  | 
	Coordi-  | 
	
  | 
	
  | 
||||||||||||
  | 
	nates of the Vector Factors  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	160  | 
|||||||
Chapter 10. The Vector and Triple Scalar Products of  | 
	Vectors  | 
	
  | 
	
  | 
	
  | 
	
  | 
	163  | 
||||||||||||||
55.  | 
	The Vector Product and Its Basic  | 
	Properties  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	163  | 
||||||||||
56.  | 
	Representation  | 
	of the Vector Product in  | 
	Terms of  | 
	the Coordinates  | 
	
  | 
	
  | 
||||||||||||||
  | 
	of  | 
	the Vector  | 
	Factors  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	170  | 
|||
