
- •Что такое Data Mining?
- •Понятие Статистики
- •Понятие Машинного обучения
- •Понятие Искусственного интеллекта
- •Сравнение статистики, машинного обучения и Data Mining
- •Развитие технологии баз данных
- •Понятие Data Mining
- •Data Mining как часть рынка информационных технологий
- •Классификация аналитических систем
- •Мнение экспертов о Data Mining
- •Отличия Data Mining от других методов анализа данных
- •Перспективы технологии Data Mining
- •Существующие подходы к анализу
- •Данные
- •Что такое данные?
- •Набор данных и их атрибутов
- •Измерения
- •Шкалы
- •Типы наборов данных
- •Данные, состоящие из записей
- •Графические данные
- •Химические данные
- •Форматы хранения данных
- •Базы данных. Основные положения
- •Системы управления базами данных, СУБД
- •Классификация видов данных
- •Метаданные
- •Методы и стадии Data Mining
- •Классификация стадий Data Mining
- •Сравнение свободного поиска и прогностического моделирования с точки зрения логики
- •Классификация методов Data Mining
- •Классификация технологических методов Data Mining
- •Свойства методов Data Mining
- •Задачи Data Mining. Информация и знания
- •Задачи Data Mining
- •Классификация задач Data Mining
- •Связь понятий
- •От данных к решениям
- •От задачи к приложению
- •Информация
- •Свойства информации
- •Требования, предъявляемые к информации
- •Знания
- •Сопоставление и сравнение понятий "информация", "данные", "знание"
- •Задачи Data Mining. Классификация и кластеризация
- •Задача классификации
- •Процесс классификации
- •Методы, применяемые для решения задач классификации
- •Точность классификации: оценка уровня ошибок
- •Оценивание классификационных методов
- •Задача кластеризации
- •Оценка качества кластеризации
- •Процесс кластеризации
- •Применение кластерного анализа
- •Кластерный анализ в маркетинговых исследованиях
- •Практика применения кластерного анализа в маркетинговых исследованиях
- •Выводы
- •Задачи Data Mining. Прогнозирование и визуализация
- •Задача прогнозирования
- •Сравнение задач прогнозирования и классификации
- •Прогнозирование и временные ряды
- •Тренд, сезонность и цикл
- •Точность прогноза
- •Виды прогнозов
- •Методы прогнозирования
- •Задача визуализации
- •Плохая визуализация
- •Сферы применения Data Mining
- •Применение Data Mining для решения бизнес-задач
- •Банковское дело
- •Страхование
- •Телекоммуникации
- •Электронная коммерция
- •Промышленное производство
- •Маркетинг
- •Розничная торговля
- •Фондовый рынок
- •Применение Data Mining в CRM
- •Исследования для правительства
- •Data Mining для научных исследований
- •Биоинформатика
- •Медицина
- •Фармацевтика
- •Молекулярная генетика и генная инженерия
- •Химия
- •Web Mining
- •Text Mining
- •Call Mining
- •Основы анализа данных
- •Анализ данных в Microsoft Excel
- •Описательная статистика
- •Центральная тенденция
- •Свойства среднего
- •Некоторые свойства медианы
- •Характеристики вариации данных
- •Корреляционный анализ
- •Коэффициент корреляции Пирсона
- •Регрессионный анализ
- •Последовательность этапов регрессионного анализа
- •Задачи регрессионного анализа
- •Выводы
- •Методы классификации и прогнозирования. Деревья решений
- •Преимущества деревьев решений
- •Процесс конструирования дерева решений
- •Критерий расщепления
- •Большое дерево не означает, что оно "подходящее"
- •Остановка построения дерева
- •Сокращение дерева или отсечение ветвей
- •Алгоритмы
- •Алгоритм CART
- •Алгоритм C4.5
- •Разработка новых масштабируемых алгоритмов
- •Выводы
- •Методы классификации и прогнозирования. Метод опорных векторов. Метод "ближайшего соседа". Байесовская классификация
- •Метод опорных векторов
- •Линейный SVM
- •Метод "ближайшего соседа" или системы рассуждений на основе аналогичных случаев
- •Преимущества метода
- •Недостатки метода "ближайшего соседа"
- •Решение задачи классификации новых объектов
- •Решение задачи прогнозирования
- •Оценка параметра k методом кросс-проверки
- •Байесовская классификация
- •Байесовская фильтрация по словам
- •Методы классификации и прогнозирования. Нейронные сети
- •Элементы нейронных сетей
- •Архитектура нейронных сетей
- •Обучение нейронных сетей
- •Модели нейронных сетей
- •Персептрон
- •Программное обеспечение для работы с нейронными сетями
- •Пример решения задачи
- •Пакет Matlab
- •Нейронные сети. Самоорганизующиеся карты Кохонена.
- •Классификация нейронных сетей
- •Подготовка данных для обучения
- •Выбор структуры нейронной сети
- •Карты Кохонена
- •Самоорганизующиеся карты (Self-Organizing Maps, SOM)
- •Задачи, решаемые при помощи карт Кохонена
- •Обучение сети Кохонена
- •Пример решения задачи
- •Карты входов
- •Выводы
- •Методы кластерного анализа. Иерархические методы
- •Методы кластерного анализа
- •Иерархические методы кластерного анализа
- •Меры сходства
- •Методы объединения или связи
- •Иерархический кластерный анализ в SPSS
- •Пример иерархического кластерного анализа
- •Определение количества кластеров
- •Методы кластерного анализа. Итеративные методы.
- •Алгоритм k-средних (k-means)
- •Описание алгоритма
- •Проверка качества кластеризации
- •Алгоритм PAM ( partitioning around Medoids)
- •Предварительное сокращение размерности
- •Факторный анализ
- •Итеративная кластеризация в SPSS
- •Процесс кластерного анализа. Рекомендуемые этапы
- •Сложности и проблемы, которые могут возникнуть при применении кластерного анализа
- •Сравнительный анализ иерархических и неиерархических методов кластеризации
- •Новые алгоритмы и некоторые модификации алгоритмов кластерного анализа
- •Алгоритм BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies)
- •Алгоритм WaveCluster
- •Алгоритм CLARA (Clustering LARge Applications)
- •Алгоритмы Clarans, CURE, DBScan
- •Методы поиска ассоциативных правил
- •Часто встречающиеся приложения с применением ассоциативных правил:
- •Введение в ассоциативные правила
- •Часто встречающиеся шаблоны или образцы
- •Поддержка
- •Характеристики ассоциативных правил
- •Границы поддержки и достоверности ассоциативного правила
- •Методы поиска ассоциативных правил
- •Разновидности алгоритма Apriori
- •AprioriTid
- •AprioriHybrid
- •Пример решения задачи поиска ассоциативных правил
- •Визуализатор "Правила"
- •Способы визуального представления данных. Методы визуализации
- •Визуализация инструментов Data Mining
- •Визуализация Data Mining моделей
- •Методы визуализации
- •Представление данных в одном, двух и трех измерениях
- •Представление данных в 4 + измерениях
- •Параллельные координаты
- •"Лица Чернова"
- •Качество визуализации
- •Представление пространственных характеристик
- •Основные тенденции в области визуализации
- •Выводы
- •Комплексный подход к внедрению Data Mining, OLAP и хранилищ данных в СППР
- •Классификация СППР
- •OLAP-системы
- •OLAP-продукты
- •Интеграция OLAP и Data Mining
- •Хранилища данных
- •Преимущества использования хранилищ данных
- •Процесс Data Mining. Начальные этапы
- •Этап 1. Анализ предметной области
- •Этап 2. Постановка задачи
- •Этап 3. Подготовка данных
- •1. Определение и анализ требований к данным
- •2. Сбор данных
- •Определение необходимого количества данных
- •3. Предварительная обработка данных
- •Очистка данных
- •Этапы очистки данных
- •Выводы
- •Процесс Data Mining. Очистка данных
- •Инструменты очистки данных
- •Выводы по подготовке данных
- •Процесс Data Mining. Построение и использование модели
- •Моделирование
- •Виды моделей
- •Математическая модель
- •Этап 4. Построение модели
- •Этап 5. Проверка и оценка моделей
- •Этап 6. Выбор модели
- •Этап 7. Применение модели
- •Этап 8. Коррекция и обновление модели
- •Погрешности в процессе Data Mining
- •Выводы
- •Организационные и человеческие факторы в Data Mining. Стандарты Data Mining
- •Организационные Факторы
- •Человеческие факторы. Роли в Data Mining
- •CRISP-DM методология
- •SEMMA методология
- •Другие стандарты Data Mining
- •Стандарт PMML
- •Стандарты, относящиеся к унификации интерфейсов
- •Рынок инструментов Data Mining
- •Поставщики Data Mining
- •Классификация инструментов Data Mining
- •Программное обеспечение Data Mining для поиска ассоциативных правил
- •Программное обеспечение для решения задач кластеризации и сегментации
- •Программное обеспечение для решения задач классификации
- •Программное обеспечение Data Mining для решения задач оценивания и прогнозирования
- •Выводы
- •Инструменты Data Mining. SAS Enterprise Miner
- •Обзор программного продукта
- •Графический интерфейс (GUI) для анализа данных
- •Инструментарий для углубленного интеллектуального анализа данных
- •Набор инструментов для подготовки, агрегации и исследования данных
- •Интегрированный комплекс разнообразных методов моделирования
- •Интегрированные средства сравнения моделей и пакеты результатов
- •Скоринг по модели и простота развертывания модели
- •Гибкость благодаря открытости и расширяемости
- •Встроенная стратегия обнаружения данных
- •Распределенная система интеллектуального анализа данных, ориентированная на крупные предприятия
- •Основные характеристики пакета SAS Enterprise Miner 5.1
- •Специализированное хранилище данных
- •Подход SAS к созданию информационно-аналитических систем
- •Технические требования пакета SASR Enterprise Miner
- •Инструменты Data Mining. Система PolyAnalyst
- •Архитектура системы
- •PolyAnalyst Workplace - лаборатория аналитика
- •Аналитический инструментарий PolyAnalyst
- •Модули для построения числовых моделей и прогноза числовых переменных
- •Алгоритмы кластеризации
- •Алгоритмы классификации
- •Алгоритмы ассоциации
- •Модули текстового анализа
- •Визуализация
- •Эволюционное программирование
- •Общесистемные характеристики PolyAnalyst
- •WebAnalyst
- •Инструменты Data Mining. Программные продукты Cognos и система STATISTICA Data Miner
- •Особенности методологии моделирования с применением Cognos 4Thought
- •Система STATISTICA Data Miner
- •Средства анализа STATISTICA Data Miner
- •Инструменты Oracle Data Mining и Deductor
- •Oracle Data Mining
- •Oracle Data Mining - функциональные возможности
- •Прогнозирующие модели
- •Краткая характеристика алгоритмов классификации
- •Регрессия
- •Поиск существенных атрибутов
- •Дескрипторные модели
- •Алгоритмы кластеризации
- •Аналитическая платформа Deductor
- •Поддержка процесса от разведочного анализа до отображения данных
- •Архитектура Deductor Studio
- •Архитектура Deductor Warehouse
- •Описание аналитических алгоритмов
- •Инструмент KXEN
- •Реинжиниринг аналитического процесса
- •Технические характеристики продукта
- •Предпосылки создания KXEN
- •Структура KXEN Analytic Framework Version 3.0
- •Технология IOLAP
- •Data Mining консалтинг
- •Data Mining-услуги
- •Работа с клиентом
- •Примеры решения
- •Техническое описание решения
- •Выводы
Инструменты Data Mining. SAS Enterprise Miner
Программный продукт SAS Enterprise Miner (разработчик SAS Institute Inc., [102]) - это интегрированный компонент системы SAS, созданный специально для выявления в огромных массивах данных информации, которая необходима для принятия решений. Разработанный для поиска и анализа глубоко скрытых закономерностей в данных SAS, Enterprise Miner включает в себя методы статистического анализа, соответствующую методологию выполнения проектов Data Mining (SEMMA) и графический интерфейс пользователя. Важной особенностью SAS Enterprise Miner является его полная интеграция с программным продуктом SAS Warehouse Administrator, предназначенным для разработки и эксплуатации информационных хранилищ, и другими компонентами системы SAS. Разработка проектов Data Mining может выполняться как локально, так и в архитектуре клиент-сервер.
Назначение пакета SAS Enterprise Miner. Пакет SAS Enterprise Miner позволяет оптимизировать процесс Data Mining в целом, начиная от организации доступа к данным и заканчивая оценкой готовой модели [104].
Пакет поддерживает выполнение всех необходимых процедур в рамках единого интегрированного решения с возможностями коллективной работы и поставляется как распределенное клиент-серверное приложение, что особенно удобно для осуществления анализа данных в масштабах крупных организаций. Пакет SAS Enterprise Miner предназначен для специалистов по анализу данных, маркетинговых аналитиков, маркетологов, специалистов по анализу рисков, специалистов по выявлению мошеннических действий, а также инженеров и ученых, ответственных за принятие ключевых решений в бизнесе или исследовательской деятельности.
Пакет SAS Enterprise Miner обеспечивает эффективную обработку огромных объемов данных и предоставляет простые способы публикации результатов анализа для различных аудиторий, что позволяет встраивать эти модели в бизнес-процессы предприятия.
Обзор программного продукта
Пакет SAS Enterprise Miner 5.1 поставляется в виде современной распределенной клиентсерверной системы для Data Mining или для углубленного анализа данных в крупных организациях. Пакет позволяет оптимизировать процессы анализа данных, поддерживая все необходимые шаги в рамках единого решения, а также возможности гибкого сотрудничества больших рабочих групп в рамках единого проекта. Система обеспечивает расширенную интеграцию с системами управления данными и развертывания моделей, а благодаря широкому спектру выбора конфигурации пакета в зависимости от требований бизнеса нет необходимости приобретать системы специализированных решений.
Графический интерфейс (GUI) для анализа данных
В пакете SAS Enterprise Miner реализован подход, основанный на создании диаграмм процессов обработки данных и позволяющий устранить необходимость ручного кодирования и ускорить разработку моделей благодаря методике Data Mining SEMMA. Среда для формирования диаграмм процессов обработки данных пакета SAS Enterprise
255

Miner устраняет необходимость ручного кодирования, диаграммы выступают в качестве самоописательных шаблонов, которые можно изменять или применять для решения новых проблем, не повторяя анализ с самого начала. Существует возможность обмена диаграммами между аналитиками в масштабах предприятия.
Графический пользовательский интерфейс пакета является интерфейсом типа "указать и щелкнуть". С его помощью пользователи могут выполнить все стадии процесса Data Mining от выбора источников данных, их исследования и модификации до моделирования и оценки качества моделей с последующим применением полученных моделей, как для обработки новых данных, так и для поддержки процессов принятия решений. Главное окно SAS Enterprise Miner представлено на рис. 23.1.
Рис. 23.1. Главное окно SAS Enterprise Miner
Инструментарий для углубленного интеллектуального анализа данных
Новая версия пакета SAS Enterprise Miner 5.1 спроектирована с использованием архитектуры Java-клиент / SAS-сервер, которая позволяет отделить вычислительный сервер, выполняющий обработку данных, от пользовательского интерфейса. Это обеспечивает гибкость в выборе конфигурации эффективного решения - от однопользовательской системы до крупнейших решений корпоративного масштаба. Обработку данных можно выполнять на мощных серверах, а конечные пользователи могут перемещаться из офиса домой или в отдаленные филиалы, не теряя связи с аналитическими проектами и сервисами. Некоторые серверные задачи, интенсивно использующие ресурсы процессора, например сортировка и агрегация данных, отбор переменных и регрессионный анализ, сделаны многопоточными, что позволяет распределить их выполнение между несколькими процессорами.
256
Процессы в Enterprise Miner могут работать параллельно и в асинхронном режиме. Масштабные или повторяющиеся процессы обучения модели или скоринга могут быть выполнены в виде пакетного задания, назначенного на наименее загруженные часы работы аналитического сервера.
Набор инструментов для подготовки, агрегации и исследования данных
Пакет SAS Enterprise Miner предлагает различные инструменты для осуществления подготовки данных, которые дают возможность, например, сделать выборку или разбивку данных, осуществить вставку недостающих значений, провести кластеризацию, объединить источники данных, устранить лишние переменные, выполнить обработку на языке SAS посредством специализированного узла SAS code, осуществить преобразование переменных и фильтрацию недостоверных данных. Пакет оснащен функциями описательной статистики, а также расширенными средствами визуализации, которые позволяют исследовать сверхбольшие объемы данных, представленных в виде многомерных графиков, и производить графическое сравнение результатов моделирования.
Платформенно-независимый пользовательский интерфейс пакета SAS Enteprise Miner 5.1 создан на базе Java и предоставляет пользователям широкий набор средств статистической графики с гибкими возможностями настройки и управления. Для создания специальных графиков предусмотрен Java-мастер. Все графики и лежащие в их основе таблицы динамически связаны между собой и поддерживают интерактивные режимы работы.
Интегрированный комплекс разнообразных методов моделирования
Пакет SAS Enterprise Miner предоставляет набор инструментов и алгоритмов прогностического и описательного моделирования, включающий деревья решений, нейронные сети, самоорганизующиеся нейронные сети, методы рассуждения, основанные на механизмах поиска в памяти (memorybased reasoning), линейную и логистическую регрессии, кластеризацию, ассоциации, временные ряды и многое другое.
Интеграция различных моделей и алгоритмов в пакете Enterprise Miner позволяет производить последовательное сравнение моделей, созданных на основе различных методов, и оставаться при этом в рамках единого графического интерфейса. Встроенные средства оценки формируют единую среду для сравнения различных методов моделирования, как с точки зрения статистики, так и с точки зрения бизнеса, позволяя выявить наиболее подходящие методы для имеющихся данных. Результатом является качественный анализ данных, выполненный с учетом специфических проблем конкретного бизнеса.
Интегрированные средства сравнения моделей и пакеты результатов
Пакет SAS Enterprise Miner оснащен рядом встроенных функций контроля, работающих в рамках единой оболочки и обеспечивающих сравнение результатов различных методов моделирования как с точки зрения статистики, так и с точки зрения бизнеса.
Полученные модели можно публиковать для совместного использования в рамках предприятия при помощи репозитария моделей, представляющего собой первую на рынке систему управления моделями. Управление моделями обеспечивает модуль Enterprise
257
Miner Repository. Пакет предоставляет ряд встроенных оценочных функций, позволяющих сравнить результаты различных методов моделирования, как в терминах бизнеса, так и с использованием статистической диагностики. Это дает возможность измерить эффективность модели в терминах ее прибыльности. Аналитики могут наблюдать за обновляемыми моделями и отслеживать улучшение их точности с течением времени. Созданные диаграммы можно сохранять и импортировать в виде XML-файлов, что облегчает процесс их передачи другим аналитикам. SAS Enterprise Miner позволяет создавать сжатые пакеты с результатами моделирования, в которых хранится вся информация о процессе обработки данных, включая предварительную обработку данных, логику моделирования, результаты моделирования и оценочный код. Эти пакеты результатов могут быть зарегистрированы на сервере метаданных (SAS Metadata Server), откуда их потом могут извлекать для изучения специалисты по анализу данных и представители бизнеса. Специальный модуль с Web-интерфейсом предусмотрен для просмотра репозитария моделей.
Скоринг по модели и простота развертывания модели
Итогом работ по интеллектуальному анализу данных является развертывание созданной модели - это заключительная стадия, на которой реализуется экономическая отдача от проведенных исследований. Процесс применения модели к новым данным, известный как скоринг, часто требует ручного написания или преобразования программного кода. Пакет SAS Enterprise Miner автоматизирует процесс подбора коэффициентов и предоставляет готовый программный код для скоринга на всех стадиях создания модели, поддерживает создание различных программных сред для развертывания модели на языках SAS, C, Java и PMML. Этот программный код может использоваться в различных средах (в пакетном режиме или в реальном времени) в системе SAS, в Web или непосредственно в реляционных базах данных. Пакет создает код для аналитических моделей и для предварительной обработки данных.
Когда оценочный код создан, можно проводить скоринг наборов данных как непосредственно в Enterprise Miner, так и экспортировать скоринг-код и выполнить скоринг на другой машине, а также отторгнуть формулу для скоринга для применения в пакетном режиме или в режиме реального времени в Web или непосредственно в реляционных базах данных.
Гибкость благодаря открытости и расширяемости
Пакет Enterprise Miner предоставляет настраиваемую и расширяемую среду интеллектуального анализа данных, позволяющую добавлять инструментальные средства и интегрировать персонифицированный код на языке SAS. Стандартную инструментальную библиотеку, входящую в состав пакета SAS Enterprise Miner 5.1, легко расширить при помощи средств настройки, использующих язык SAS и XML-логику. Кроме того, есть возможность использования экспериментального интерфейса Java API, позволяющего встраивать процессы пакета Enterprise Miner в различные пользовательские приложения. Эта возможность может оказаться особенно плодотворной для компаний, стремящихся создать собственное аналитическое приложение, которое будет сочетать в себе, например, возможности создания OLAP-отчетов и выполнения интеллектуального анализа данных в рамках единого интерфейса.
258