
- •Что такое Data Mining?
- •Понятие Статистики
- •Понятие Машинного обучения
- •Понятие Искусственного интеллекта
- •Сравнение статистики, машинного обучения и Data Mining
- •Развитие технологии баз данных
- •Понятие Data Mining
- •Data Mining как часть рынка информационных технологий
- •Классификация аналитических систем
- •Мнение экспертов о Data Mining
- •Отличия Data Mining от других методов анализа данных
- •Перспективы технологии Data Mining
- •Существующие подходы к анализу
- •Данные
- •Что такое данные?
- •Набор данных и их атрибутов
- •Измерения
- •Шкалы
- •Типы наборов данных
- •Данные, состоящие из записей
- •Графические данные
- •Химические данные
- •Форматы хранения данных
- •Базы данных. Основные положения
- •Системы управления базами данных, СУБД
- •Классификация видов данных
- •Метаданные
- •Методы и стадии Data Mining
- •Классификация стадий Data Mining
- •Сравнение свободного поиска и прогностического моделирования с точки зрения логики
- •Классификация методов Data Mining
- •Классификация технологических методов Data Mining
- •Свойства методов Data Mining
- •Задачи Data Mining. Информация и знания
- •Задачи Data Mining
- •Классификация задач Data Mining
- •Связь понятий
- •От данных к решениям
- •От задачи к приложению
- •Информация
- •Свойства информации
- •Требования, предъявляемые к информации
- •Знания
- •Сопоставление и сравнение понятий "информация", "данные", "знание"
- •Задачи Data Mining. Классификация и кластеризация
- •Задача классификации
- •Процесс классификации
- •Методы, применяемые для решения задач классификации
- •Точность классификации: оценка уровня ошибок
- •Оценивание классификационных методов
- •Задача кластеризации
- •Оценка качества кластеризации
- •Процесс кластеризации
- •Применение кластерного анализа
- •Кластерный анализ в маркетинговых исследованиях
- •Практика применения кластерного анализа в маркетинговых исследованиях
- •Выводы
- •Задачи Data Mining. Прогнозирование и визуализация
- •Задача прогнозирования
- •Сравнение задач прогнозирования и классификации
- •Прогнозирование и временные ряды
- •Тренд, сезонность и цикл
- •Точность прогноза
- •Виды прогнозов
- •Методы прогнозирования
- •Задача визуализации
- •Плохая визуализация
- •Сферы применения Data Mining
- •Применение Data Mining для решения бизнес-задач
- •Банковское дело
- •Страхование
- •Телекоммуникации
- •Электронная коммерция
- •Промышленное производство
- •Маркетинг
- •Розничная торговля
- •Фондовый рынок
- •Применение Data Mining в CRM
- •Исследования для правительства
- •Data Mining для научных исследований
- •Биоинформатика
- •Медицина
- •Фармацевтика
- •Молекулярная генетика и генная инженерия
- •Химия
- •Web Mining
- •Text Mining
- •Call Mining
- •Основы анализа данных
- •Анализ данных в Microsoft Excel
- •Описательная статистика
- •Центральная тенденция
- •Свойства среднего
- •Некоторые свойства медианы
- •Характеристики вариации данных
- •Корреляционный анализ
- •Коэффициент корреляции Пирсона
- •Регрессионный анализ
- •Последовательность этапов регрессионного анализа
- •Задачи регрессионного анализа
- •Выводы
- •Методы классификации и прогнозирования. Деревья решений
- •Преимущества деревьев решений
- •Процесс конструирования дерева решений
- •Критерий расщепления
- •Большое дерево не означает, что оно "подходящее"
- •Остановка построения дерева
- •Сокращение дерева или отсечение ветвей
- •Алгоритмы
- •Алгоритм CART
- •Алгоритм C4.5
- •Разработка новых масштабируемых алгоритмов
- •Выводы
- •Методы классификации и прогнозирования. Метод опорных векторов. Метод "ближайшего соседа". Байесовская классификация
- •Метод опорных векторов
- •Линейный SVM
- •Метод "ближайшего соседа" или системы рассуждений на основе аналогичных случаев
- •Преимущества метода
- •Недостатки метода "ближайшего соседа"
- •Решение задачи классификации новых объектов
- •Решение задачи прогнозирования
- •Оценка параметра k методом кросс-проверки
- •Байесовская классификация
- •Байесовская фильтрация по словам
- •Методы классификации и прогнозирования. Нейронные сети
- •Элементы нейронных сетей
- •Архитектура нейронных сетей
- •Обучение нейронных сетей
- •Модели нейронных сетей
- •Персептрон
- •Программное обеспечение для работы с нейронными сетями
- •Пример решения задачи
- •Пакет Matlab
- •Нейронные сети. Самоорганизующиеся карты Кохонена.
- •Классификация нейронных сетей
- •Подготовка данных для обучения
- •Выбор структуры нейронной сети
- •Карты Кохонена
- •Самоорганизующиеся карты (Self-Organizing Maps, SOM)
- •Задачи, решаемые при помощи карт Кохонена
- •Обучение сети Кохонена
- •Пример решения задачи
- •Карты входов
- •Выводы
- •Методы кластерного анализа. Иерархические методы
- •Методы кластерного анализа
- •Иерархические методы кластерного анализа
- •Меры сходства
- •Методы объединения или связи
- •Иерархический кластерный анализ в SPSS
- •Пример иерархического кластерного анализа
- •Определение количества кластеров
- •Методы кластерного анализа. Итеративные методы.
- •Алгоритм k-средних (k-means)
- •Описание алгоритма
- •Проверка качества кластеризации
- •Алгоритм PAM ( partitioning around Medoids)
- •Предварительное сокращение размерности
- •Факторный анализ
- •Итеративная кластеризация в SPSS
- •Процесс кластерного анализа. Рекомендуемые этапы
- •Сложности и проблемы, которые могут возникнуть при применении кластерного анализа
- •Сравнительный анализ иерархических и неиерархических методов кластеризации
- •Новые алгоритмы и некоторые модификации алгоритмов кластерного анализа
- •Алгоритм BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies)
- •Алгоритм WaveCluster
- •Алгоритм CLARA (Clustering LARge Applications)
- •Алгоритмы Clarans, CURE, DBScan
- •Методы поиска ассоциативных правил
- •Часто встречающиеся приложения с применением ассоциативных правил:
- •Введение в ассоциативные правила
- •Часто встречающиеся шаблоны или образцы
- •Поддержка
- •Характеристики ассоциативных правил
- •Границы поддержки и достоверности ассоциативного правила
- •Методы поиска ассоциативных правил
- •Разновидности алгоритма Apriori
- •AprioriTid
- •AprioriHybrid
- •Пример решения задачи поиска ассоциативных правил
- •Визуализатор "Правила"
- •Способы визуального представления данных. Методы визуализации
- •Визуализация инструментов Data Mining
- •Визуализация Data Mining моделей
- •Методы визуализации
- •Представление данных в одном, двух и трех измерениях
- •Представление данных в 4 + измерениях
- •Параллельные координаты
- •"Лица Чернова"
- •Качество визуализации
- •Представление пространственных характеристик
- •Основные тенденции в области визуализации
- •Выводы
- •Комплексный подход к внедрению Data Mining, OLAP и хранилищ данных в СППР
- •Классификация СППР
- •OLAP-системы
- •OLAP-продукты
- •Интеграция OLAP и Data Mining
- •Хранилища данных
- •Преимущества использования хранилищ данных
- •Процесс Data Mining. Начальные этапы
- •Этап 1. Анализ предметной области
- •Этап 2. Постановка задачи
- •Этап 3. Подготовка данных
- •1. Определение и анализ требований к данным
- •2. Сбор данных
- •Определение необходимого количества данных
- •3. Предварительная обработка данных
- •Очистка данных
- •Этапы очистки данных
- •Выводы
- •Процесс Data Mining. Очистка данных
- •Инструменты очистки данных
- •Выводы по подготовке данных
- •Процесс Data Mining. Построение и использование модели
- •Моделирование
- •Виды моделей
- •Математическая модель
- •Этап 4. Построение модели
- •Этап 5. Проверка и оценка моделей
- •Этап 6. Выбор модели
- •Этап 7. Применение модели
- •Этап 8. Коррекция и обновление модели
- •Погрешности в процессе Data Mining
- •Выводы
- •Организационные и человеческие факторы в Data Mining. Стандарты Data Mining
- •Организационные Факторы
- •Человеческие факторы. Роли в Data Mining
- •CRISP-DM методология
- •SEMMA методология
- •Другие стандарты Data Mining
- •Стандарт PMML
- •Стандарты, относящиеся к унификации интерфейсов
- •Рынок инструментов Data Mining
- •Поставщики Data Mining
- •Классификация инструментов Data Mining
- •Программное обеспечение Data Mining для поиска ассоциативных правил
- •Программное обеспечение для решения задач кластеризации и сегментации
- •Программное обеспечение для решения задач классификации
- •Программное обеспечение Data Mining для решения задач оценивания и прогнозирования
- •Выводы
- •Инструменты Data Mining. SAS Enterprise Miner
- •Обзор программного продукта
- •Графический интерфейс (GUI) для анализа данных
- •Инструментарий для углубленного интеллектуального анализа данных
- •Набор инструментов для подготовки, агрегации и исследования данных
- •Интегрированный комплекс разнообразных методов моделирования
- •Интегрированные средства сравнения моделей и пакеты результатов
- •Скоринг по модели и простота развертывания модели
- •Гибкость благодаря открытости и расширяемости
- •Встроенная стратегия обнаружения данных
- •Распределенная система интеллектуального анализа данных, ориентированная на крупные предприятия
- •Основные характеристики пакета SAS Enterprise Miner 5.1
- •Специализированное хранилище данных
- •Подход SAS к созданию информационно-аналитических систем
- •Технические требования пакета SASR Enterprise Miner
- •Инструменты Data Mining. Система PolyAnalyst
- •Архитектура системы
- •PolyAnalyst Workplace - лаборатория аналитика
- •Аналитический инструментарий PolyAnalyst
- •Модули для построения числовых моделей и прогноза числовых переменных
- •Алгоритмы кластеризации
- •Алгоритмы классификации
- •Алгоритмы ассоциации
- •Модули текстового анализа
- •Визуализация
- •Эволюционное программирование
- •Общесистемные характеристики PolyAnalyst
- •WebAnalyst
- •Инструменты Data Mining. Программные продукты Cognos и система STATISTICA Data Miner
- •Особенности методологии моделирования с применением Cognos 4Thought
- •Система STATISTICA Data Miner
- •Средства анализа STATISTICA Data Miner
- •Инструменты Oracle Data Mining и Deductor
- •Oracle Data Mining
- •Oracle Data Mining - функциональные возможности
- •Прогнозирующие модели
- •Краткая характеристика алгоритмов классификации
- •Регрессия
- •Поиск существенных атрибутов
- •Дескрипторные модели
- •Алгоритмы кластеризации
- •Аналитическая платформа Deductor
- •Поддержка процесса от разведочного анализа до отображения данных
- •Архитектура Deductor Studio
- •Архитектура Deductor Warehouse
- •Описание аналитических алгоритмов
- •Инструмент KXEN
- •Реинжиниринг аналитического процесса
- •Технические характеристики продукта
- •Предпосылки создания KXEN
- •Структура KXEN Analytic Framework Version 3.0
- •Технология IOLAP
- •Data Mining консалтинг
- •Data Mining-услуги
- •Работа с клиентом
- •Примеры решения
- •Техническое описание решения
- •Выводы
изучить ее базовые термины, другими словами, он должен провести анализ предметной области. На основании знаний методов и инструментов Data Mining специалист по добыче данных предлагает вариант решения проблемы.
Второй точкой соприкосновения указанных выше специалистов является интерпретация результатов, полученных в результате Data Mining.
Взаимодействие специалиста по добыче данных и администратора баз данных осуществляется на этапах анализа требований к данным и сбора данных. Непосредственно подготовка данных для Data Mining может осуществляться специалистом по добыче данных самостоятельно либо во взаимодействии с администратором баз данных.
Взаимодействие трех специалистов осуществляется на завершающих этапах Data Mining при проверке работоспособности системы, например, при сравнении прогнозных результатов с реальными. При необходимости процесс Data Mining возвращается на один из предыдущих этапов.
От того, насколько консолидированы будут действия специалистов из разных областей, зависит длительность проекта и качество полученных результатов.
Если в проекте Data Mining присутствует роль руководителя, на него возлагается координация и контроль работ, проводимых описанными выше специалистами.
CRISP-DM методология
Мы рассмотрели процесс Data Mining с двух сторон: как последовательность этапов и как последовательность работ, выполняемых исполнителями ролей Data Mining.
Существует еще одна сторона - это стандарты, описывающие методологию Data Mining. Последние рассматривают организацию процесса Data Mining и разработку Data Miningсистем.
CRISP-DM [100] (The Cross Industrie Standard Process for Data Mining - Стандартный межотраслевой процесс Data Mining) является наиболее популярной и распространенной методологией. Членами консорциума CRISP-DM являются NCR, SPSS и DаimlerChrysler.
В соответствии со стандартом CRISP, Data Mining является непрерывным процессом со многими циклами и обратными связями.
Data Mining по стандарту CRISP-DM включает следующие фазы:
1.Осмысление бизнеса (Business understanding).
2.Осмысление данных (Data understanding).
3.Подготовка данных (Data preparation).
4.Моделирование (Modeling).
5.Оценка результатов (Evaluation).
6.Внедрение (Deployment).
Кэтому набору фаз иногда добавляют седьмой шаг - Контроль, он заканчивает круг. Фазы Data Mining по стандарту CRISP-DM изображены на рис. 21.2.
238

Рис. 21.2. Фазы, рекомендуемые моделью CRISP-DM
При помощи методологии CRISP-DM Data Mining превращается в бизнес-процесс, в ходе которого технология Data Mining фокусируется на решении конкретных проблем бизнеса. Методология CRISP-DM, которая разработана экспертами в индустрии Data Mining, представляет собой пошаговое руководство, где определены задачи и цели для каждого этапа процесса Data Mining.
Методология CRISP-DM описывается в терминах иерархического моделирования процесса [101], который состоит из набора задач, описанных четырьмя уровнями обобщения (от общих к специфическим): фазы, общие задачи, специализированные задачи и запросы.
На верхнем уровне процесс Data Mining организовывается в определенное количество фаз, на втором уровне каждая фаза разделяется на несколько общих задач. Задачи второго уровня называются общими, потому что они являются обозначением (планированием) достаточно широких задач, которые охватывают все возможные Data Mining-ситуации. Третий уровень является уровнем специализации задачи, т.е. тем местом, где действия общих задач переносятся на конкретные специфические ситуации. Четвертый уровень является отчетом по действиям, решениям и результатам фактического использования Data Mining.
CRISP-DM - это не единственный стандарт, описывающий методологию Data Mining. Помимо него, можно применять такие известные методологии, являющиеся мировыми стандартами, как Two Crows, SEMMA, а также методологии организации или свои собственные.
239

SEMMA методология
SEMMA методология реализована в среде SAS Data Mining Solution (SAS) [102]. Ее аббревиатура образована от слов Sample ("Отбор данных", т.е. создание выборки), Explore ("Исследование отношений в данных"), Modify ("Модификация данных"), Model ("Моделирование взаимозависимостей"), Assess ("Оценка полученных моделей и результатов"). Методология разработки проекта Data Mining в соответствии с методологией SEMMA изображена на рис. 21.3.
Рис. 21.3. Методология разработки проекта Data Mining в соответствии с методологией SEMMA
Подход SEMMA подразумевает, что все процессы выполняются в рамках гибкой оболочки, поддерживающей выполнение всех необходимых работ по обработке и анализу данных. Подход SEMMA сочетает структурированность процесса и логическую организацию инструментальных средств, поддерживающих выполнение каждого из шагов. Благодаря диаграммам процессов обработки данных, подход SEMMA упрощает применение методов статистического исследования и визуализации, позволяет выбирать и преобразовывать наиболее значимые переменные, создавать модели с этими переменными, чтобы предсказать результаты, подтвердить точность модели и подготовить модель к развертыванию.
Эта методология не навязывает каких-либо жестких правил. В результате использования методологии SEMMA разработчик может располагать научными методами построения концепции проекта, его реализации, а также оценки результатов проектирования.
По результатам последних опросов KDnuggets (2004 г.), 42% опрошенных лиц использует методологию CRISP-DM, 10% - методологию SEMMA, 6% - собственную методологию организации, 28% - свою собственную методологию, другими методологиями пользуется 6% опрошенных. Не пользуются никакой методологией 7% опрошенных.
240
Другие стандарты Data Mining
Как уже отмечалось, описанные стандарты являются методологиями Data Mining, т.е. рассматривают организацию процесса и разработку систем Data Mining. Помимо этой группы, в последние годы появился ряд стандартов, цель которых - согласовать достижения в Data Mining, упростить управление моделированием процессов и дальнейшее использование созданных моделей. Эти стандарты условно можно поделить на две категории:
1.Стандарты, относящиеся к выработке единого соглашения по хранению и передаче моделей Data Mining.
2.Стандарты, относящиеся к унификации интерфейсов.
Стандарт PMML
В предыдущих лекциях мы уже упоминали о стандарте PMML (Predictive Modeling markup Language) - языке описания предикторных (или прогнозных) моделей или языке разметки для прогнозного моделирования.
PMML относится к группе стандартов по хранению и передаче моделей Data Mining.
Разработка и внедрение этого стандарта ведется IT-консорциумом DMG (Data Mining Group). DMG [103] - группа, в которую входят все лидирующие компании, разрабатывающие программное обеспечение в области анализа данных.
Основа этого стандарта - язык XML. Примером другого стандарта, также основанного на языке XML, является стандарт обмена статистическими данными и метаданными. Стандарт PMML используется для описания моделей Data Mining и статистических моделей.
Основная цель стандарта PMML - обеспечение возможности обмена моделями данных между программным обеспечением разных разработчиков.
При помощи стандарта PMML-совместимые приложения могут легко обмениваться моделями данных с другими PMML-инструментами. Таким образом, модель, созданная в одном программном продукте, может использоваться для прогнозного моделирования в другом.
По словам сторонников PMML, этот стандарт "делает Data Mining более демократичным", позволяет все большому количеству пользователей пользоваться продуктами Data Mining. Это достигается за счет возможности использования ранее созданных моделей данных.
PMML позволяет использовать модели данных сколь угодно часто и существенно помогает в практической работе с ними.
Стандарт PMML включает:
∙описание анализируемых данных (структура и типы данных);
∙описание схемы анализа (используемые поля данных);
∙описание трансформаций данных (например, преобразования типов данных);
∙описание статистик, прогнозируемых полей и самих прогнозных моделей.
241