
- •Экзаменационный билет № 1
- •Экзаменационный билет № 2
- •Экзаменационный билет № 3
- •Экзаменационный билет № 4
- •Экзаменационный билет № 5
- •Экзаменационный билет № 6
- •Экзаменационный билет № 7
- •Экзаменационный билет № 8
- •Экзаменационный билет № 9
- •Экзаменационный билет № 10
- •Экзаменационный билет № 11
- •Экзаменационный билет № 12
- •Экзаменационный билет № 13
- •Экзаменационный билет № 14
- •Экзаменационный билет № 15
- •Экзаменационный билет № 16
- •Экзаменационный билет № 17
- •Экзаменационный билет № 18
- •Экзаменационный билет № 19
- •Экзаменационный билет № 20
- •Экзаменационный билет № 21
- •Экзаменационный билет № 22
- •Экзаменационный билет № 23
- •Экзаменационный билет № 24
- •Экзаменационный билет № 25
- •Экзаменационный билет № 26
- •Экзаменационный билет № 27
Экзаменационный билет № 25
Потенциальная теория адсорбции Поляни. Десорбционный потенциал. Характеристическая кривая адсорбции. Температурная инвариантность и афинность характеристических кривых.
Потенциальная теория Поляни была предложена для термодинамического описания полимолекулярной адсорбции. Она устанавливает связь величины адсорбции с изменением давления пара (газа) и с теплотами адсорбции, исходя из объема адсорбционного пространства. Наиболее удачно теория Поляни предсказывает зависимость величины адсорбции от температуры.
Модель адсорбции в теории Поляни предполагает, что адсорбат ведет себя термодинамически как однокомпонентная система, находящаяся в потенциальном поле поверхностных сил адсорбента, который химически инертен. Теория Поляни принимает, что в адсорбционном пространстве действуют только дисперсионные силы, которые, во-первых, аддитивны, во-вторых, не зависят от температуры.
Введено допущение, что практически все адсорбированное вещество находится на поверхности в жидком состоянии. Это допущение в большой мере соответствует состоянию адсорбата в порах пористых адсорбентов. Именно поэтому подход, используемый в теории Поляни, оказался более пригодным для описания адсорбции на пористых адсорбентах, в порах которых происходит конденсация паров.
За меру интенсивности
адсорбционного взаимодействия принят
адсорбционный потенциал — работа
переноса 1 моль пара, находящегося в
равновесии с жидким адсорбатом в
отсутствие адсорбента (давление ps)
в равновесную с адсорбентом паровую
фазу (давление р): .
Этот потенциал характеризует работу против действия адсорбционных сил. Каждой точке изотермы адсорбции соответствуют определенные значения А и p/ps, которые позволяют получить значения V и ε, т. е. найти зависимости адсорбционного потенциала от объема адсорбата на адсорбенте — потенциальную кривую адсорбции.
Так
как дисперсионные силы не зависят от
температуры, то от температуры не должна
зависеть и форма потенциальной кривой
адсорбции, что экспериментально
подтверждается во многих случаях.
Экспериментальные точки при разных
температурах ложатся на одну и ту же
кривую ε =f(V),
которую поэтому называют характеристической
кривой:
,т. е. адсорбционный
потенциал при постоянном объеме жидкого
адсорбата на адсорбенте (постоянной
степени объемного заполнения) не зависит
от температуры (температурная
инвариантность характеристической
кривой).
Важная особенность
потенциальных кривых адсорбции,
заключается в том, что характеристические
кривые для одного и того же адсорбента
и разных адсорбатов при всех значениях
объемов адсорбата в поверхностном слое
находятся в постоянном соотношении β:
Коэффициент β был назван коэффициентом аффинности, Отсюда следует, что, зная характеристическую кривую для одного адсорбата и коэффициент аффинности для другого адсорбата по отношению к первому, можно вычислить изотерму адсорбции второго адсорбата на том же адсорбенте.
Природа сил притяжения и отталкивания между частицами в дисперсных системах. Уравнение для энергии притяжения между частицами. Константа Гамакера и ее физческий смысл. Анализ зависимости суммарной энергии взаимодействия частиц от расстояния между ними.
Рассмотрим зависимость от расстояния энергии притяжения частиц — молекулярной составляющей расклинивающего давления. Из сил Ван-дер-Ваальса наиболее универсальны и существенны лондоновские силы дисперсионного взаимодействия.
Энергия
электростатического отталкивания
пластин равна .
Для вывода уравнения
энергии молекулярного притяжении между
частицами воспользуемся уравнением
энергии притяжения одной молекулы
(атома) к поверхности адсорбента (в
данном случае частицы):
Приращение энергии молекулярного притяжения, отнесенное к единице площади, пропорционально приращению числа молекул (атомов) в цилиндре с основанием, равным единице площади, т. е. ndr:
После интегрирования получим:
Величина A12 в уравнении называется константой
Гамакера. Она учитывает природу взаимодействующих тел. Эта константа выражается в единицах энергии и имеет значение порядка 10-19 Дж.
Чем сильнее взаимодействует дисперсная фаза со средой, тем меньше константа Гамакера, это значит, что силы притяжения между частицами уменьшаются.
Для области малых потенциалов суммарная энергия взаимодействия равна
Первичный минимум I отвечает непосредственному слипанию частиц, а вторичный минимум II — их притяжению через прослойку среды. Максимум, соответствующий средним расстояниям, характеризует потенциальный барьер, препятствующий слипанию частиц.
Потенциальный барьер увеличивается с уменьшением константы Гамакера.
Рассчитайте межфазное натяжение в системе CaF2-вода, если известно, что растворимость частиц CaF2 диаметром 0,3 мкм превышает нормальную растворимость на 18% при 20ºС. Плотность частиц CaF2 составляет 2500 кг/м3, а молярная масса – 78 г/моль.