- •Федеральное агентство по образованию
- •Оглавление
- •Предисловие
- •Введение
- •Раздел 1. Основы строительного материаловедения
- •Глава 1. Классификация строительных материалов и технологии их производства
- •1.1. Классификация строительных материалов и методический подход к их изучению
- •1.2. Общие сведения о технологиях промышленности строительных материалов
- •1.3. Сырьевая база промышленности строительных материалов
- •Глава 2. Основные свойства строительных материалов
- •2.1. Связь состава, строения и свойств строительных материалов
- •2.2. Классификация и характеристика основных свойств строительных материалов
- •Показатели плотности, пористости и теплопроводности (средние значения) для некоторых строительных материалов
- •Характеристика важнейших свойств строительных материалов
- •Раздел 2. Природные материалы
- •Глава 3. Природные каменные материалы
- •3.1. Общие сведения о горных породах
- •Классификация горных пород по генетическому признаку
- •3.2. Технические требования к каменным материалам
- •3.3. Добыча, обработка и виды изделий из природного камня
- •Глава 4. Материалы и изделия из древесины
- •4.1. Состав и строение древесины
- •4.2. Свойства древесины
- •4.3. Защита древесины от гниения и возгорания
- •4.4. Виды материалов, изделий и конструкций из древесины
- •Раздел 3. Материалы, получаемые термической обработкой минерального сырья
- •Глава 5. Керамические материалы
- •5.1. Общие сведения
- •5.2. Сырье для производства керамических материалов
- •5.3. Основы технологии керамических изделий
- •5.4. Виды керамических материалов
- •Номинальные размеры стеновых керамических изделий
- •Группы изделий по теплотехническим характеристикам
- •Глава 6. Неорганические вяжущие вещества
- •6.1. Общие сведения. Классификация
- •6.2. Воздушные вяжущие вещества
- •6.2.1. Гипсовые вяжущие вещества
- •6.2.2. Воздушная известь
- •6.3. Гидравлические вяжущие вещества
- •6.3.1. Портландцемент
- •Сроки схватывания цементов
- •Требования к прочности образцов
- •Тепловыделение клинкерных минералов
- •Соотношение марок и классов портландцемента
- •6.3.3. Глиноземистый цемент
- •6.3.4. Расширяющиеся цементы
- •Специальные виды портландцемента
- •Раздел 4. Материалы на основе неорганических вяжущих веществ
- •Глава 7. Бетоны
- •7.1. Общие сведения, классификация
- •7.2. Материалы для бетона
- •Классификация песков по крупности
- •Требования к зерновому составу крупного заполнителя
- •7.3. Свойства бетонной смеси
- •Классификация бетонных смесей по удобоукладываемости
- •7.4. Основы технологии бетона
- •7.5. Свойства бетона
- •7.6. Разновидности бетонов
- •Виды бетона
- •Раздел 5. Органические вяжущие вещества и материалы на их основе
- •Глава 8. Битумные и дегтевые вяжущие вещества и материалы на их основе
- •8.1. Общие сведения, классификация
- •8.2. Битумы
- •Физико-механические свойства нефтяных битумов
- •8.3. Дегти
- •Глава 9. Полимерные строительные материалы
- •9.1. Общие сведения
- •9.2. Состав пластмасс
- •9.3. Основы технологии строительных изделий из пластмасс
- •9.4. Свойства строительных пластмасс
- •9.5. Применение полимерных материалов и изделий
- •Раздел 6. Строительные материалы специального назначения
- •Глава 10. Теплоизоляционные материалы
- •10.1. Общие сведения, классификация
- •10.2. Способы создания высокопористого строения:
- •10.3. Свойства теплоизоляционных материалов
- •Свойства теплоизоляционных материалов
- •10.4. Основные виды и особенности применения теплоизоляционных материалов
- •Заключение
- •Практическая часть Примеры вариантов контрольного задания
- •Рекомендуемая литература
6.3. Гидравлические вяжущие вещества
Гидравлические свойства вяжущих обусловлены наличием в их составе силикатов, алюминатов, ферритов кальция и зависят от гидравлического модуля m и температуры обжига сырья:
m = ,
m более 9 для воздушной извести,
m = 1,7-9 для гидравлической извести,
m = 1,1-1,7 - для романцемента,
m = 1,9-2,4 - для портландцемента.
Усиление гидравлических свойств в ряду «воздушная известь гидравлическая известьроманцемент» связано с уменьшением гидравлического модуля с 9 до 2 при одинаковой температуре обжига 10000С. Увеличение температуры обжига сырья с 1000 0С до 1450 0С, при которой наблюдается частичное плавление, приводит к получению качественно нового вяжущего - портландцемента.
6.3.1. Портландцемент
Портландцементом называют гидравлическое вяжущее вещество, в составе которого преобладают высокоосновные силикаты Са (70-80%). Его получают совместным помолом клинкера с добавкой природного гипса (3-5%). Клинкер представляет собой зернистый камнеподобный материал, получаемый обжигом до спекания (при 1450 0С) тщательно подобранной сырьевой смеси. Добавка гипса вводится для регулирования сроков схватывания портландцемента.
Открытие портландцемента (1824-1825 гг.) связывают с именами Е.Г.Челиева и Д.Аспдина (Великобритания).
Сырьем для производства портландцемента служат:
- известняки с высоким содержанием СаСО3 (мел, плотный известняк и др.);
- глинистые породы состава Al2O3.nSiO2.mH2O (глины, глинистые сланцы);
- корректирующие добавки (пиритные огарки, трепел, опока, бокситы и др.).
Соотношение между карбонатными и глинистыми составляющими сырьевой смеси 3:1 (75% известняка и 25% глины).
Возможна замена глинистого и частично карбонатного компонента побочными продуктами промышленности - доменными или электротермофосфорными гранулированными шлаками, а также нефелиновым шламом, получающимся при производстве глинозема.
Производство портландцемента - сложный технологический и энергоемкий процесс, состоящий из ряда операций, которые можно разделить на две основные стадии. Первая - производство клинкера, вторая - измельчение клинкера совместно с гипсом, а в ряде случаев и с активными минеральными добавками.
Производство клинкера складывается из следующих технологических операций:
- добыча и доставка сырьевых материалов, их подготовка;
- приготовление сырьевой смеси заданного состава путем помола и смешивания сырьевых компонентов в определенном количественном соотношении;
- обжиг сырьевой смеси до спекания;
- интенсивное охлаждение клинкера;
- складирование клинкера.
Производство портландцемента включает:
- подготовку минеральных добавок (дробление, сушку);
- дробление гипсового камня;
- помол клинкера с активными минеральными добавками и гипсом;
- складирование, упаковку и отправку цемента потребителю.
Производство клинкера может осуществляться сухим, мокрым и комбинированным способом.
Сухой способ заключается в приготовлении сырьевой муки в виде тонкоизмельченного сухого порошка (из сухих или предварительно высушенных материалов) с остаточной влажностью 1-2%.
При мокром способе сырьевые материалы измельчаются и смешиваются в присутствии воды, поэтому смесь получается в виде водной суспензии - шлама с влажностью 35-45%. Это наиболее энергоемкий способ.
Комбинированный способ заключается в том, что приготовленный шлам до поступления в печь обезвоживается на фильтрах до влажности 16-18%. Однако энергоемкость производства в целом остается высокой.
Обжиг сырьевой смеси осуществляется в основном во вращающихся печах, работающих по принципу противотока. Печь имеет небольшой наклон и вращается со скоростью 1-2 об/мин. При мокром способе производства длина печи достигает 185 м. Сырье подается в печь со стороны ее верхнего (холодного) конца и при вращении печи медленно двигается к нижнему (горячему) концу, со стороны которого вдувается топливо (природный газ, мазут, воздушно-угольная смесь), сгорающее в виде 20-30-метрового факела. Двигаясь навстречу горячим газам, образующимся при сгорании топлива, сырье проходит различные температурные зоны. В каждой зоне проходят различные физико-химические превращения, в результате которых и получается цементный клинкер. Полученный в печи раскаленный клинкер поступает в холодильник, где резко охлаждается холодным воздухом. Клинкер выдерживают на складе 1-2 недели.
Химический состав клинкера выражают содержанием оксидов (% по массе):
СаО - 63-66 %, SiO2 - 21-24 %, Al2O3 - 4-8 %, Fe2O3 - 2-4 %.
В процессе обжига, доводимого до спекания смеси, главные оксиды образуют силикаты, алюминаты и алюмоферрит кальция в виде минералов кристаллической структуры, а некоторая их часть входит в стекловидную фазу.
Минеральный состав клинкера:
- алит 3СаО. SiO2 (С3S) - 45-60% - самый важный минерал, определяет быстроту твердения, прочность и другие свойства;
- белит 2СаО. SiO2 (С2S) - 20-30% - медленно твердеет, но достигает высокой прочности при длительных сроках твердения;
- трехкальциевый алюминат 3СаО. Al2O3 (С3А) - 4-12% - быстро гидратируется и твердеет, но конечная прочность его небольшая; является причиной сульфатной коррозии цементного камня;
- четырехкальциевый алюмоферрит 4СаО. Al2O3 .Fe2O3 (С4АF) - 10-20% по скорости твердения занимает промежуточное положение между С3S и С2S.
- клинкерное стекло 5-15% - затвердевшая в виде стекла часть расплава, содержит СаО, Al2O3 , Fe2O3 , MgO, К2О, Na2O.
- свободные оксиды кальция и магния могут присутствовать в виде зерен (СаО своб) и в виде минерала периклаза (MgО своб); их содержание не должно превосходить 1% и 5% соответственно; в случае их повышенного содержания может проявляться неравномерное изменение объема цемента при твердении и появление трещин;
- щелочные оксиды Na2O и К2О – их содержание не должно превышать 0,6%, так как при большем содержании они могут явиться причиной коррозии цементного бетона.
Твердение портландцемента происходит благодаря сложным физико-химическим процессам взаимодействия клинкерных минералов и гипса с водой.
2(3СаО. SiO2) + 6H2O = 3СаО. 2SiO2. 3H2O + 3Са(ОН)2
гидросиликат Са гидроксид Са
2(2СаО. SiO2) + 4H2O = 3СаО. 2SiO2. 3H2O + Са(ОН)2
3СаО. Al2O3+ 6H2O = 3СаО. Al2O3. 6H2O
гидроалюминат Са
В присутствии 3-5% гипса образуется практически нерастворимое соединение - гидросульфоалюминат кальция (эттрингит), который предотвращает быструю гидратацию С3А за счет образования защитного слоя на его поверхности и замедляет схватывание.
Кроме того, роль добавки гипса состоит в улучшение свойств цементного камня (прочности, морозостойкости) за счет уплотнения структуры, связанного с увеличением объема эттрингита в еще не затвердевшей системе.
3СаО. Al2O3 + 3(СаSO4.2H2O) + 26 H2O = 3СаО. Al2O3 . 3СаSO4.32H2O
гидросульфоалюминат кальция (эттрингит)
4СаО. Al2O3 . Fe2O3 + mH2O = 3СаО. Al2O3 . 6H2O + СаО. Fe2O3 . nH2O
гидроалюминат Са гидроферрит Са
Структура цементного камня может быть представлена как микроскопическая неоднородная дисперсная система - “микробетон” (по В.Н. Юнгу).
Цементный камень включает:
- продукты гидратации цемента
гель гидросиликатов (до 75% объема) и другие новообразования;
кристаллы Са(ОН)2 и эттрингита;
- непрореагировавшие зерна клинкера - клинкерный фонд;
- поры:
поры геля (менее 0,1 мкм),
капиллярные поры (от 0,1 до 10 мкм) между агрегатами частиц геля,
воздушные поры (от 50 мкм до 2 мм).
Свойства портландцемента
Тонкость помола цемента определяет быстроту твердения и прочность цементного камня. Она должна быть такой, чтобы через сито № 008 проходило не менее 85% массы пробы (Sуд = 2500-3000 см2/г.).
Истинная плотность = 3,05-3,15 г/см3.
Насыпная плотность в среднем составляет 1300 кг/м3.
Водопотребность портландцемента характеризуется количеством воды (% от массы цемента), необходимым для получения цементного теста нормальной густоты и составляет 22-28%.
Сроки схватывания цементов определяют с помощью прибора Вика (табл. 6.2). Для информации в таблице приведены сроки схватывания и основного алюминатного цемента – глиноземистого.
Таблица 6.2