Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
95
Добавлен:
04.01.2014
Размер:
573.19 Кб
Скачать

x + y = 2 ( )y = 0 x = 2, y = 0;C 2, 0

Используя формулу (2.11) , получим:

 

1

x=2y

1

x2

 

x=2y

1

 

(2 y )2

 

y2

 

∫∫( x y ) dxdy = dy

( x y ) dx = dy

 

yx

 

=

 

y (2 y )

 

+ y2 dy =

 

x=y

2

2

S

0

x= y

0

2

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= 4 2 y + y

 

 

 

 

2 y + y

2 y

 

+ y2

dy = (2 4 y + 2 y2 )dy = 2 y y2 + y

 

 

0 = 2 .

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

3

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

0

 

 

 

 

 

 

 

3

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.22. Вычислить площадь фигуры, ограниченной линиями: x = 4 y y2 , x + y = 6

 

 

(рис. 26).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

 

 

 

y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x = 6

y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P

 

 

 

 

x

=

4 y y

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A

 

 

 

 

 

P

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Рис. 26

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Решение:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Найдем координаты точек пересечения заданных линий:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6 y = 4 y y2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y2 5 y + 6 = 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y1 = 3 ; x1 = 3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y2

= 2 ; x2 = 4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P

(3, 3) , P

(4, 2)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

т.

A - точка входа, т.

 

B - точка выхода из области S .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

x=4 y y2

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

1

 

 

5

 

 

 

 

 

 

 

 

2

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S = dy dx = (4 y y2 6 + y )dy =(y2 + 5 y 6)dy =

y3 +

y2 6 y

 

=

.

 

 

6

 

 

 

2

 

 

 

x=6y

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

3

2

 

 

 

 

 

 

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.23. Вычислить площадь, ограниченную линиями y = 2 x ;

y2

= 4x + 4 (рис. 27).

 

 

 

 

 

y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

2

P2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

4

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y =

 

2

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A

 

 

 

 

 

S

 

 

 

 

B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y2 = 4x + 4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Рис. 27

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

21

Решение:

Координаты точек пересечения линий

y2 = 8 4 y + 4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y2 + 4 y 12 = 0

(0, 2)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y = 2 ; x = 0 ; P

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

1

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y2 = −6 ; x2 = 8 ; P2 (8, 6)

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

x=2y

 

 

 

 

 

 

 

 

 

 

 

 

1

y2 +1 dy =

 

1

 

 

1

y3

 

2

 

64

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S = dy dx =

2 y

3y

y2

 

 

=

.

 

 

 

 

 

 

6

x=

1

2

1

 

 

4

 

 

2

 

12

 

 

6

3

 

 

 

 

 

y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.24. Вычислить площадь, ограниченную линиями

 

y2

= 4 (1x) , x2 + y2 = 4 (вне пара-

болы) (рис. 28).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

2

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

S

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P2

 

 

2

 

 

 

 

 

 

 

 

Рис.28

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Решение:

Координаты точек пересечения линий

4 x2 = 4 (1x) ;

x2 4x = 0 ; x ( x 4) = 0 ;

x1 = 0 ;

y1,2 = ±2 ;

 

 

 

 

 

 

 

 

 

 

 

P (0, 2) ; P

(0, 2)

 

 

 

 

 

 

 

 

 

 

 

1

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x2 = 4 ;

y =

 

 

 

не существует

 

 

 

 

 

 

 

12

 

 

 

 

 

 

т. A -вход, т. B - выход из области S .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

x= 4y2

2

 

 

 

 

 

1

 

 

 

 

 

2

 

 

2

S = dy dx =

 

4 y

 

1

 

 

y

 

dy =

 

4

 

 

2

x=1

1

y2

2

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Вычислим отдельно первый интеграл

2

4 y2 dy =

2

y = 2sin t ; dy = 2 cos tdt ; t = arcsin x 2

при изменении 2 x 2 ; π t π ; 2 2

2

2

 

 

2

 

 

1

 

 

 

 

2

 

2

4 y

 

dy

1

 

y

 

dy .

 

 

 

 

 

2

 

 

4

 

 

 

22

π

π

π

π

 

 

 

2

 

 

 

 

 

 

2

2

 

 

 

2

 

 

 

1

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

(1+ cos 2t ) dt = 2 t

 

 

 

 

 

=

4 4sin 2t

 

2 cos tdt = 4 cos

 

 

tdt = 2

 

sin 2t

 

 

 

 

 

 

 

π

 

 

 

 

 

π

 

 

 

 

 

π

 

 

 

2

 

 

π

 

 

 

 

 

 

 

 

 

 

 

 

 

2

2

 

 

 

 

 

 

2

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Тогда площадь S можно выразить, как

 

 

 

 

 

 

 

 

 

 

 

2

 

1

 

2

 

 

 

 

1

 

3

 

 

 

8

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

S = 2π

1

 

 

y

 

dy = 2π

y

 

 

 

y

 

2

= 2π

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

4

 

 

 

 

12

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.4. Двойной интеграл в полярной системе координат

= 2π .

Вычисление двойного интеграла в полярных координатах осуществляется по формуле

β

∫∫ f ( x, y ) dS = dϕ

S

α

r =r2 (ϕ )

 

f (r cosϕ, r sin ϕ ) rdr

(2.12)

r =r1 (ϕ )

 

В подынтегральном выражении f ( x, y ) dS осуществляется переход к полярным коор-

динатам по формулам:

x = r cosϕ , y = r sin ϕ , dS = rdrdϕ .

При этом предполагается, что всякий луч, выходящий из начала координат, пересекает границу области S не более чем в двух точках, уравнение линии входа r = r1 (ϕ ) , уравнение линии выхода r = r2 (ϕ ) ; α и β - пределы изменения угла ϕ в об-

ласти S

(рис. 29).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r = r2 (ϕ )

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ϕ = β

 

 

 

 

 

A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ϕ = const

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ϕ = α

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r = r1 (ϕ )

 

 

 

 

 

 

 

 

β

 

 

α

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Рис. 29

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

В отличие от декартовых координат, в полярных координатах порядок интегрирования всегда одинаков. Внутреннее интегрирование ведут по переменной r от точки входа A до точки выхода B при произвольном, но фиксированном значении ϕ = const

в интервале [α, β ] . Внешнее интегрирование ведут по переменной ϕ в пределах ее из-

менения α ϕ β .

23

r = r2 (ϕ )

r = r1 (ϕ )

0 x

Рис. 30

Если область S кольцевая и ограничена замкнутыми линиями r = r1 (ϕ ) и r = r2 (ϕ ) , а полюс получим внутри кольца (рис. 30) и в формуле (2.12) следует поло-

жить α = 0 , β = 2π .

2.25. Вычислить площадь фигуры, ограниченной линиями x2 + y2 = 1; x2 + y2 = e2

(рис. 31).

 

 

y

 

 

S

 

 

 

 

x

0

1

e

 

 

Рис. 31

Область S представляет собой кольцо, заключенное между окружностями. Перейдем к полярным координатам уравнения грани области

r 2 cos2 ϕ + r 2 sin2 ϕ = 1 r = 1 - линия входа

r 2 cos2 ϕ + r 2 sin2 ϕ = e2 r = e - линия выхода

 

2π

 

r =e

 

 

2π

1

(e2 1)dϕ = 1 (e2 1)ϕ

0

= π (e2 1)

 

 

 

 

 

 

 

 

 

 

S = dϕ rdr =

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

r =1

0

2

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Рассмотрим решение интеграла

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ln

(x2 + y2 )

 

 

ln (x2 + y2 )

 

ln r2

(cos2 ϕ + sin2 ϕ )

 

ln r2

 

ln r

 

 

 

 

 

 

 

 

 

 

∫∫

 

 

 

 

 

 

 

dxdy

=

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

= 2

 

 

 

=

 

x

2

+ y

2

 

x

2

+ y

2

 

 

 

 

 

r

2

(cos

2

ϕ

+ sin

2

ϕ )

 

r

2

r

2

S

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2π

 

r =e

 

 

 

 

 

 

 

2π

 

 

 

2

 

 

 

e

 

2π

 

 

 

 

 

 

 

 

2π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= 2 dϕ

 

ln r

dr = 2

dϕ

ln

 

r

 

 

=

(ln2 e ln2 1)dϕ = dϕ = ϕ

 

02π = 2π .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

r =1

 

 

r

 

 

0

 

2

 

 

1

 

 

0

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.26 Вычислить площадь фигуры, ограниченной окружностями r = 1, r = 2 cosϕ (вне

3

окружности r = 1 ) (рис. 32).

24

y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Рис. 32

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Решение:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

;ϕ = π .

 

 

 

 

 

 

 

 

 

 

 

Найдем координаты т. P , получим 1 =

2

cosϕ;

cosϕ =

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

2

 

 

 

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π

 

 

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P2 1,

, P1

1,

6

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π

 

 

2

 

 

 

 

 

 

 

 

 

 

π

 

 

 

 

 

 

2

cosϕ

 

 

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cosϕ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

 

3

 

 

 

 

 

 

 

 

6

 

2

 

 

 

 

 

 

 

4

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S = ∫∫ rdrdϕ = 2dϕ

 

 

 

rdr = 2

 

 

r

 

 

 

 

 

 

dϕ =

 

cos

ϕ

1 dϕ =

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

S

 

 

 

 

0

 

 

1

 

 

 

 

 

 

0

2

 

 

1

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

1+ cos 2ϕ

 

 

 

 

 

1

6

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

π

 

1

 

π

 

π

 

 

1

 

 

 

 

=

 

 

 

 

(2 cos 2ϕ 1) dϕ =

 

[sin 2ϕ ϕ]

 

 

 

(3 3

π ).

 

 

 

 

 

 

 

 

1 dϕ

=

 

 

 

 

06

=

 

sin

 

 

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

3

 

2

 

 

 

 

 

 

 

 

 

3

0

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

3

 

3 6

 

 

18

 

 

 

 

2.27 Найти площадь фигуры ограниченной линией x3 + y 3

= axy (площадь петли) (рис.

33).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

a

x

2

Рис. 33

Решение:

Преобразуем данное уравнение в полярных координатах

r 3 (sin 3 ϕ + cos3 ϕ) = ar 2 sin ϕ cosϕ; т.е. r = a sin ϕ cosϕ sin 3 ϕ + cos3 ϕ

Осью симметрии является луч ϕ = π , поэтому: 4

25

 

 

 

 

π

a sin ϕ cos ϕ

 

 

 

π

 

 

 

 

 

 

 

 

 

π

 

 

 

 

 

 

 

 

 

 

 

4

sin 3 ϕ+cos3 ϕ

 

 

 

4

sin ϕ cosϕ

 

 

 

 

 

4

 

2

ϕ cos

4

ϕ

 

 

S = 2∫∫rdrdϕ = 2dϕ

 

r

dr = a 2

 

dϕ = a 2

tg

 

 

dϕ =

 

 

 

 

2

 

 

 

 

 

2

 

 

 

S

0

0

 

 

 

 

0

(sin 3 ϕ + cos3 ϕ)

 

 

 

 

0

 

cos6 ϕ(1 + tg 3ϕ)

 

 

2

π

2

 

 

 

 

2

π

 

3

 

 

 

2

 

π

 

 

2

 

 

 

 

 

 

 

 

4

 

 

 

 

4

 

 

 

4

 

 

 

 

 

 

 

 

 

a

 

3tg ϕ

 

 

a

 

d (1 + tg ϕ)

 

a

 

 

 

a

 

 

 

 

 

 

=

 

 

dϕ =

 

 

= −

 

 

 

 

=

.

 

 

 

 

 

 

 

 

2

 

 

2

 

 

3

 

 

 

 

 

 

 

3

0

cos 2 ϕ(1 + tg 3ϕ)

3

0

(1 + tg 3ϕ)

3(1

+ tg ϕ) 0

 

 

6

 

 

 

 

 

 

2.28

 

Вычислить

площадь

 

фигуры,

ограниченной

 

лемнискатой

 

Бернулли

(x 2 + y 2 )2 = 2a 2 (x 2 y 2 ) (рис. 34). y

 

0

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Решение:

 

 

 

Рис. 34

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Перейдем к полярным координатам: (x 2 + y 2 )2

= 2a 2 (x 2

y 2 )

 

 

r 4

= 2a 2 r 2 (cos2 ϕ sin 2 ϕ)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r 2

= 2a 2 cos 2ϕ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r = a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 cos 2ϕ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Для части фигуры, расположенной в первой четверти,

 

угол ϕ изменяется в пределах

0 ϕ π .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Тогда:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π

 

 

 

 

 

π

 

 

 

 

 

 

 

π

 

 

 

 

π

 

 

 

 

 

4

a

2 cos 2ϕ

 

4

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cos 2ϕ

 

 

 

 

 

 

S = 4∫∫ rdrdϕ = 4dϕ

rdr = 2dϕ r2

a

 

= 22a2 cos 2ϕdϕ =

2a2 sin 2ϕ

4

0

 

 

 

0 = 2a2 .

 

S

0

 

0

 

0

 

 

 

 

 

 

 

0

 

 

 

 

 

2.5 Интеграл по поверхности (первого рода)

 

 

 

 

 

 

 

 

 

 

Вычисление интеграла по поверхности

Q , заданной уравнениями

Z = Z (x, y) ,

сводится к вычислению двойного интеграла по плоской области

S , которая является

проекцией поверхности Q на плоскость XOY .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

∫∫ f (x, y, z)dq =∫∫ f (x, y, z(x, y))

 

 

 

2

 

 

2

 

 

 

 

(2.13)

 

1 + Z x

 

 

+ Z y

dS

 

 

 

Q

 

 

 

 

S

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Здесь dq = 1 +

 

2

 

2

dS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Z

 

+ Z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Если уравнение поверхности дано в виде X = X ( y, z ) , то используется формула

 

 

f ( x ( x, y), y, z )

 

 

 

dS

 

∫∫ f ( x, y, z ) dq =

∫∫

 

1+ (X y)2 + (X z

)2

(2.14)

Q

 

 

 

 

ï ð Qí. àYOZ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

26

Здесь dq =

 

2

 

2

1 + X

 

+ X

 

dq

 

 

y

 

z

 

Если уравнение поверхности дано в виде Y = Y ( x, z ) , то используется формула

 

 

 

 

 

f (x, y ( x, y), z )

 

 

dS ,

 

∫∫ f ( x, y, z ) dq =

∫∫

1+ (Yx)2 + (Yz

)2

(2.15)

Q

ï ð Qí. àYOZ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

здесь dq =

 

2

 

 

2

 

 

 

 

 

1 + Y

 

 

+ Y

 

 

dS

 

 

 

 

 

 

x

 

z

 

 

 

 

 

 

 

2.29 Вычислить поверхность Q сферы x 2 + y 2 + z 2 = R 2 (рис. 35)

 

 

 

 

 

 

 

 

 

 

 

 

 

z = R2 x2 y2

z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ϕ r

 

 

 

y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Решение:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Рис. 35

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Вычислить поверхность верхней половины сферы z = R2 x2 y2 .

В этом случае

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z = −

 

 

 

 

 

 

 

x

 

 

 

 

 

 

;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

R 2

x 2

y 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z

= −

 

 

 

 

 

 

x

 

 

 

 

 

 

;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y

 

R 2

x 2

y 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Используя формулу (2.13)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z 2

 

 

z

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R 2

 

 

 

 

 

 

 

 

 

R

dq = 1 +

 

 

+

 

 

 

 

 

 

=

 

 

 

 

 

 

 

 

 

=

 

 

 

 

;

 

 

 

 

 

 

 

2

 

2

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

R

x

y

 

 

 

 

 

R 2 x 2 y 2

 

 

 

 

 

 

 

 

 

 

y

 

 

 

 

 

 

 

 

 

 

 

 

Область интегрирования (проекция Q на XOY )

 

x 2 + y 2

R 2 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

R

 

R2 x2

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Тогда

S =

dx

 

 

 

 

 

 

 

dy

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

R

 

 

 

 

 

 

 

 

R 2 x2 y 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R 2 x 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Перейдем к полярной системе координат: r = R

 

 

2π

 

R

 

R

 

 

 

 

 

 

 

 

 

 

 

 

2π

 

 

 

 

 

 

 

 

R

2π

 

S = 2 dϕ

 

 

 

 

rdr = 2R

[R 2

r 2 ] dϕ = 2R Rdϕ = 4πR 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

0

 

 

 

R 2

r 2

 

 

 

 

 

0

 

 

 

 

 

 

0

 

0

 

 

 

 

2.30. Вычислить площадь части поверхности

z = 1x2 (в пространстве параболический

цилиндр, в плоскости

XOZ - парабола ), отсеченной плоскостями y = x и y = 2x

( x 0) (рис.36)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

27

z

z = 1x2

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y =

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

y = x

 

 

2x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Рис. 36

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Решение.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

В рассматриваемой задаче:

 

 

 

 

 

 

 

 

 

 

 

 

z = z ' = − 2x ;

 

 

 

 

 

 

 

z ' = 0

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dq =

 

 

1+ 4x2 dxdy

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

2 x

 

 

 

 

 

 

1

 

 

 

2 x

1

 

 

S = ∫∫

1+ 4x2

dS = dx

 

 

 

1+ 4x2

dy = dx

1+ 4x2

y

= x

1+ 4x2

dx =

 

 

 

S

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

x

 

 

 

 

 

 

0

 

 

 

x

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

1

(1+ 4x2 )

 

 

 

1 =

1

(1+ 4x2 )3 / 2

 

1 =

4

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

12

 

 

 

 

 

 

 

 

 

 

 

0

3

 

 

 

 

 

 

 

 

 

 

2.31. Вычислить интеграл ∫∫ xdq ,где Q –

часть сферы x2 + y2 + z2 = 9 , лежащая в пер-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Q

 

 

 

 

 

 

 

 

 

 

 

 

вом октанте (рис.37).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

S

 

 

 

 

 

 

 

y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

Рис. 37

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Решение:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Запишем

 

 

уравнение

 

 

 

поверхности

Q в виде, разрешенном относительно x ;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x =

 

9 y2 z2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dq =

1+

2

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( X ' )

 

+ (X ' ) dydz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y

 

 

 

 

 

 

 

z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x ' =

 

 

 

 

 

y

 

 

 

 

;x ' =

 

 

 

 

 

z

 

 

 

 

;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y

 

 

 

 

9 y2 z2

 

 

 

z

 

 

 

 

9 y2 z2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dq =

 

 

3d y dz

 

 

 

 

y2 z2

9

28

Проекция поверхности Q на плоскость YOZ (область S )- четверть круга y2 + z2 ≤ 9 Поэтому

∫∫ xdq = ∫∫

 

 

 

3dS

 

= 3∫∫ dS =

27

π

9 y2 z2

 

 

 

 

4

 

 

9 y2 z2

Q

S

 

 

 

S

 

2.32. Вычислить поверхностный интеграл ∫∫ zdq, если Q- часть поверхности z = xy,

Q

отсеченной плоскости x = 0, y = 0, x = 1, y = 1.(рис.38) z

 

 

 

 

 

 

 

0

 

S

1

 

y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Рис. 38

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Решение

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f (x, y, z) = z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dq =

1+ x2 + y2 dS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S квадрат

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

1

 

 

 

 

1

 

(1+ x

 

+ yz)

1

 

 

 

Q = ∫∫ zdq = ∫∫ xy

 

 

 

 

 

 

 

 

 

 

 

2

2

 

 

 

1+ x2

+ y2 dS = xdxy x2

+ y2 +1dy = xdx

 

 

 

0

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

Q

Q

 

 

 

 

 

 

 

 

0

 

0

 

 

 

 

0

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= 1 x (2 + x2 )

2

 

(1+ x2 )2

dx = 1

(2 + x2 )2

(1+ x2 )2

1

= 1

(9 3 8 2 +1)

 

 

 

 

1

 

3

 

 

 

 

 

3

 

 

 

 

 

5

 

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 0

 

 

 

 

 

 

 

 

 

 

15

 

0

15

 

 

 

 

 

 

 

2.33. Найти площадь части конуса z = x2 + y2 , заключенной внутри цилиндра

x2 + y2 = 2x (рис. 39) z

y

0

x Рис. 39

Решение:

Из уравнения конуса имеем:

29

dq = 1+

 

 

 

 

x2

 

+

 

y2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x2 + y2

x2 + y2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Областью интегрирования S является круг, лежащий в плоскости

XOY ограниченный

окружностью x2 + y2 = 2x или в некоторой системе координат r = 2сosϕ. Тогда

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π

2 cosθ

 

 

π

 

 

r =2 cosϕ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x2

 

 

 

 

 

 

y2

 

 

 

 

 

 

 

4

 

 

2

 

 

 

 

 

S = ∫∫

1+

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

dxdy =

2

∫∫ dxdy =

2

dϕ rdr = 2

 

2

dϕ

rdt =

 

x

2

+ y

2

x

2

+ y

2

S

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S

 

 

 

π

0

 

 

 

0

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π

 

 

 

 

 

 

 

2 cosϕ

 

 

 

 

 

 

 

 

π

 

 

 

 

 

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

2

 

 

 

 

 

 

1

 

 

 

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= 2 2

 

 

r

 

 

 

 

 

 

dϕ = 2

 

2 2 cos

 

ϕdϕ = 2

2 (1+ cos 2ϕ )dϕ = 2 2

ϕ +

 

 

sin 2ϕ

 

0

= π 2

2

 

 

 

 

 

 

 

2

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Тройной интеграл

Вычисление тройного интеграла сводится к последовательному вычислению определенного интеграла по отрезку и двойного интеграла по плоской области.

Пусть плоская область S - проекция тела R на плоскость XOY , причем каждая прямая, параллельная от OZ , пересекает границу тела R не более чем в двух точках (точка входа и точка выхода). Если тела таковы, что это условие не выполняется, то тело R следует разделить на конечное число тел, для которых пересечение его прямой в двух точках выполнимо, решить задачи для каждого из вновь полученных тел и результаты сложить ( используя свойство определенного интеграла)

Пусть z = z1 ( x, y ) - уравнение поверхности входа и z = z2 ( x, y) - уравнение по-

верхности выхода, тогда ∫ ∫ ∫ f ( x, y, z ) dV = ∫ ∫dS

z2 ( x, y )

 

f ( x, y, z ) dz

(2.16)

R

S

z1 ( x, y)

 

Сначала вычисляется внутренний интеграл по z

при постоянных x и y , от полученного

результата, затем находим двойной интеграл по области S .

2.3.4. Вычислить объем тела, ограниченного поверхностями (рис. 40) x2 + y2 = 1, x + z = 2

2x + z = 4

z

R

1 y

0

1

x Рис. 40

30