Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Экзамен / Технология конструкционных материалов.doc
Скачиваний:
296
Добавлен:
04.01.2014
Размер:
1.54 Mб
Скачать

18. Использование попутных продуктов промышленности для изготовления строительных материалов (на примере шлакопортландцемента и цемента с минеральными добавками).

19. Жидкое стекло и кислотоупорный кварцевый цемент.

Жидкое стекло представляет собой коллоидный водный раствор силиката натрия или калия, имеющий плотность 1,3-1,5 при содержании воды 50-70%. Жидкое стекло получают, растворяя раздробленные куски силикат-глыбы в воде при повышении t и давлении 0,6-0,7 МПа. Для ускорения твердения жидкого стекла к нему добавляют кремнефторид натрия Na2SiF6, ускоряющий выпадение геля кремневой кислоты и гидролиз жидкого стекла.

Кислотоупорный кварцевый цемент – это порошкообразный материал, получаемый путем совместного помола чистого кварцевого песка и кремнефторида натрия (возможно смешение раздельно измельченных компонентов) кварцевый песок можно заменить в кислотоупорном цементе порошком бештаунита или андезита. Кислотоупорный цемент применяют для изготовления кислотостойких растворов и бетонов; замазок. Из кислотоупорного бетона изготовляют резервуары, башни и другие сооружения на химических заводах, ванны в травильных цехах.

VI. Тема «Бетоны»

  1. Классификация бетонов. Применение бетонов различных видов.

Бетон – искуственный каменный материал, получаемый в результате затвердевания тщательно подобранной перемешанной смеси, состоящей из вяжущего вещества, воды, заполнителей и специальных добавок. Цемента и воды около 15%. Песка и крупного заполнителя около 85%. Бетон – основной строительный материал, универсальный. Можно придать любую форму, изменять свойства. Классификация бетонов по средней плотности: а) ρm>2600 кг/м3 – особо тяжелый бетон (заполнители – железные руды, стальные опилки, магнетит, гематит, лиманит, стальные зерна, чугунная дробь); б) ρm=2100 - 2600 кг/м3 – тяжелый бетон (в качестве заполнителей используются плотные, тяжелые, магматические, метаморфические и осадочные породы); в)ρm=1800 - 2100 кг/м3 – облегченные бетоны (в качестве заполнителей – ГП с ρm=1600-1900 кг/м3, песчаники, известняки, искуственные крупные заполнители – кирпичный бой, старый бетон); г)ρm=500 - 1800 кг/м3 – легкие бетоны. Пористые заполнители: а) природные (пористые ГП – вулканического происхождения: туф, пенза, лава); б) искусственные: специально сделанные (керамзит) и отходы промышленности (поризованные шлаки – шлаковая пенза); д) ρm500 кг/м3 – особооблегченный бетон. Ячеистые бетоны, теплоизоляционные, крупнопористый бетон на пористом заполнителе. Классификация по виду конструкции: сборные и монолитные (на небольших стройках готовят смесь в передвижной бетономешалке. Широко используются сухие смеси. Классификация бетонов по назначению: гидротехнический, декаротивный, кислотоупорный, жаростойкие, дорожные, бетоны для защиты от радиации.

Тяжелый бетон используют для защиты стальной арматуры от коррозии, для цементно-бетонных дорог и полов промышленных зданий. Бетоны высокой морозостойкости применяют для тех частей сооружений, которые подвергаются многократному замораживанию и оттаиванию во влажном состоянии (гидротехнические сооружения, конструкции железобетонных градирен, цементно-бетонные покрытия дорог и аэродромов…). Крупнопористый бетон используется как теплоизоляционный материал. Гипсобетон широко применяют для изготовления сплошных и пустотелых плит перегородок. Ячеистые бетоны для ограждающих конструкций, железобетона и др.

  1. Заполнители для тяжёлого бетона. Технические требования. Стандартные методы оценки зернового состава.

Цемент выбирают в зависимости от условий эксплуатации бетона, от вида бетонной конструкции, от заданной марки бетона. Если речь идет о производстве железобетона на заводе, то берется быстро твердеющий цемент. Мелкий заполнитель – песок (природный и искусственный 0,16 – 5 мм. По происхождению пески: горные, овражные, речные, морские. От происхождения зависит форма зерен (окатанные или угловатые). Крупные заполнители: щебень (дробление горных пород и крупного гравия. Щебень чище, чем гравий); гравий (осадочная горная порода, те же примеси, что и в песках).благодаря гладкой поверхности гравия бетоны на гравии более экономичны с точки зрения расхода цемента. У гравия сцепление с цементным камнем. Щебень из искусственного камня (из шлака, кирпичного боя, из дробленого бетона). Вода – чистая, водопроводная. Содержание солей ≤5000 мг/л. SO3 ≤2750 мг/л. добавки в бетонах: 1) химические вещества (0,1 – 2)% Ц (вводится с водой затворения). 2) тонкомолотые минеральные вещества (5 – 20)%Ц (для разбавления высокомарочных цементов). Химические добавки: 1) добавки, регулирующие свойства бетонной смеси (а) добавки стабилизаторы (препятствуют расслоению бетонной смеси), б) водоудерживающие добавки); 2) добавки, регулирующие схватывание и твердение бетона (ускорители и замедлители твердения); 3) добавки, регулирующие плотность и пористость бетона (газообразователи, пенообрахователи); 4) добавки, придающие бетонам специальные свойства (гидрофортность, стойкость к коррозии).

  1. Удобоукладываемость бетонных смесей. Стандартные методы определения подвижности и жёсткости. Факторы, влияющие на Удобоукладываемость.

Бетонная смесь представляет собой сложную систему, состоящую из новообразований, образовавшихся при взаимодействии вяжущего с водой, непрореагированных частиц клинкера, заполнителя, воды вводимых сп. добавок и вовлеченного воздуха. Наиболее важным свойством бетонной смеси является удобоукладываемость, то есть способность деформироваться без нарушения целостности. Для описания поведения бетонной смеси в различных условиях используют ее реологические характеристики: предельное напряжение сдвига, вязкость и период релаксации. Для определения этих свойств применяют вискоземетры. Для полной оценки бетоносмеси и правильной организации производства бетонных и железобетонных изделий и конструкций необходимо знать и другие свойства смеси: ее уплотняемость, однородность, расслаиваемость, изменение объема в процессе затвердения, воздухововлечение, первоначальную прочность. Особенность бетоносмеси состоит в постоянном изменении ее свойств от начала приготовления до затвердивания. Удобоукладоваемость – способность заполнять форму при данном способе уплотнения, сохраняя ее однородность. Для оценки удобоукладываемости используют три показателя:

1 - подвижность бетоносмеси, которая является характеристикой структурной прочности смеси;

2 – жесткость, которая является показателем динамической вязкости бетоносмеси;

3 – связанность, которая характеризует водоотделение бетоносмеси после ее отстаивания.

Факторы: 1(основной) – количество воды затворения;

2 – объем цементного теста;

3 – объем цементного раствора

  1. Факторы, влияющие на Удобоукладываемость бетонной смеси. Пластифицирующие добавки к бетонам.

Главный фактор — это содержание воды в смеси, выраженное в килограммах на кубический метр бетонной смеси.

Если содержание воды и других компонентов смеси фиксировано, то удобоукладываемость регулируется максимальным размером заполнителя, его гранулометрическим составом, формой и текстурой. Однако гранулометрический состав и водоцементное отношение следует рассматривать   совместно,   так   как   гранулометрический   состав, дающий наиболее удобоукладываемый бетон при данной величине водоцементно-го отношения, может не оказаться наилучшим для другой величины этого отношения. В частности, чем больше водоцементное отношение, тем более мелкий гранулометрический состав необходим для получения наибольшей удобоукладываемости.

Пластифицирующие добавки для бетона - это добавки, которые способны увеличивать подвижность бетонных смесей ("разжижать" их) без изменения расхода воды.

Суперпластификаторы, помимо увеличения подвижности бетонной смеси, могут использоваться в бетонах с целью: повышения прочности, морозостойкости, водонепроницаемости, сокращения сроков тепловлажностной обработки или сроков распалубки бетона естественного твердения (полное или частичное сохранение расхода цемента при сокращении расхода воды), сокращения расхода цемента (сохранение подвижности бетонной смеси и В/Ц с уменьшением расхода воды).

  1. Основной закон прочности бетона (формулы и графики).

Физический смысл закона прочности бетона. Закон прочности бетона устанавливает зависимость прочности от качества применяемых материалов и пористости бетона. Прочность вяжущего характеризуется его маркой (Rц), качество заполнителя коэффициентом А, а пористость косвенно определяется величиной водо-цементного отношения В/Ц. Зависимость прочности от В/Ц является в сущности зависимостью прочности от объема пор, образованных водой, не вступающей в химическое взаимодействие с цементом. Кривая зависимости прочности бетона от количества воды затворения (при постоянном расходе цемента и способе уплотнения), приведенная на рис.4, характеризует физический смысл закона прочности. Левая ветвь кривой принадлежит недоуплотненным бетонным смесям, слишком жестким для данного способа уплотнения. При возрастании количества воды затворения, т. е. В/Ц, эти смеси укладываются плотнее, и прочность бетона повышается. Наконец, при оптимальном (для данного способа уплотнения) количества воды бетон имеет наибольшую плотность и прочность, что соответствует максимуму на кривой прочности.

Для тяжелых бетонов применяется заполнитель с прочностью в 1,5-2 раза больше заданной марки бетона. При большом содержании цементного теста зерна заполнителя раздвинуты на значительные расстояния, они почти не взаимодействуют друг с другом, поэтому решающее значение будет иметь прочность цементного камня и прочность сцепления его с заполнителем. На практике часто используют зависимость прочности бетона от цементно-водного отношения по формуле И. Боломея - Б.Г. Скрамтаева (рис. 5).

Для обычных бетонов с Ц/В=1,4-2,5 формула прочности имеет вид: Rб=ARц(Ц/B-0,5). При высококачественных заполнителях (щебень из плотных изверженных пород, крупный песок с минимальным содержанием вредных примесей) А=0,65; для рядовых заполнителей А=0,6; при применение заполнителей пониженного качества А=0,55. Для высокопрочных бетонов, изготовляемых с Ц/В>2,5, применяется формула: Rб=ARц(Ц/B+0,5). В этой формуле для высококачественных заполнителей А=0,43, для рядовых А=0,4. Основной закон прочности является общим для материалов с конгломератной структурой, он распространяется на тяжелые и легкие бетоны, мелкозернистые бетоны и строительные растворы. Только параметры А, входящие в формулу прочности, будут иметь различные численные значения, зависящие от вида материала и заполнителя.

  1. Основные принципы определения состава тяжёлого бетона.

Надо найти оптимальное соотношение цемента, песка, воды и заполнителей.Марку цемента выбирают в зависимости от проектной марки бетона по прочности. Чтобы получить бетон с минимальным расходом вяжущего, необходимо выяснить, какое должно быть при этом соотношение Rб/Rц. Расход цемента Ц (кг/м3) найдем, пользуясь формулой прочности бетона:Ц=(1/А*Rб/Rц+0,5)*В. Существует следующая зависимость расхода цемента от соотношения Rб/Rц. Для бетонов низких и средних марок минимальные расходы вяжущего соответствуют: Rб/Rц = 0,4–0,6 или Rц 2Rб. Соотношение Rб/Rц, близкое к 1, допустимо по необходимости для бетонов высоких марок (М500, М600-М800), когда Rб Rц. Правильное определение состава бетона имеет большое технико–экономическое значение. Для расчета состава бетона устанавливают стандартные характеристики применяемых материалов. Определение состава бетона производят обычно расчетно–экспериментальным методом, который предусматривает предварительный расчет состава по формулам и последующую экспериментальную проверку и уточнение состава с помощью пробного замеса. Расчет сводится к установлению количества цемента, воды затворения, мелкого и крупного заполнителей в кг на 1м уплотненной бетонной смеси исходя из заданных свойств смеси и прочности бетона. 1) Ц/В Количество воды затворения находят в зависимости от заданной жесткости или подвижности бетонной смеси. Вычисляют цементно–водное отношение по формулам: Rб=А* Rц (Ц/В – 0,5) для обычных бетонов с Ц/В = 1,4–2,5 и Rб=А* Rц (Ц/В + 0,5) для высокопрочных бетонов с Ц/В>2,5. Далее находят водо-цементное отношение В/Ц=1/(Ц/В). 2) В Расход цемента находят, зная количество воды затворения и водо-цементное отношение: Ц=В/(В/Ц). Если расход цемента на 1м3 бетона окажется меньше допускаемого по нормам, то количество его следует увеличить до требуемой нормы, сохранив прежнее В/Ц. Расход воды при этом пересчитывают, исходя из увеличенного расхода цемента. Минимальный расход вяжущего для бетонных конструкций – 200 кг/ м3, для железобетонных – 220 кг/ м3 и конструкций, работающих в агрессивных средах – 250 кг/ м3. 3) Расход крупного и мелкого заполнителей определяют из следующих положений: а) объем плотно уложенного бетона (принимают в расчете равным 1м3 или 1000л) без учета воздушных пустот слагается из объема зерен мелкого и крупного заполнителей и объема цементного теста, заполняющего пустоты между зернами заполнителей. Уравнение, выражающее это положение и называемое уравнением абсолютных объемов, может быть представлено в следующем виде:Ц/ц+В*П/п+К/к=1000. Б) пустоты между зернами крупного заполнителя должны быть заполнены растворной частью с учетом некоторой раздвижки зерен, величина которой определяется коэффициентом раздвижки Кразд: Ц/ц +П/п +В=К/н.к*Vпуст.кразд, где Ц, В, П, Кразд – расходы соответственно цемента, воды, песка и крупного заполнителя, кг/м3; ц , п , к – плотности этих материалов; н.к – насыпная плотность крупного заполнителя; Vпуст.к – относительный объем пустот (пустотность) крупного заполнителя, определяемый по формуле Vпуст.к =1-(н.к/к); Кразд – коэффициент раздвижки для жестких бетонных смесей, Кразд =1,05–1,15, в среднем 1,1, для подвижных смесей – по соответствующему графику в зависимости от расхода цемента и В/Ц. Формулы для определения расходов (кг/м3): К=1000/( Vпуст* Кразд/н.к+1/к) и песка П=[1000 – Ц/ц – В – К/к]* п. Таким образом получен расчетный состав бетона в виде расхода (кг/м3) компонентов: Ц, В, П, К. Он может быть выражен в относительных единицах (по отношению к массе цемента): 1: В/Ц: П/Ц: К/Ц. Состав бетона проверяют и уточняют путем пробного замеса бетонной смеси, приготовляемой из производственных материалов.

  1. Основные принципы определения состава тяжёлого бетона. Лабораторный и рабочий составы.

Надо найти оптимальное соотношение цемента, песка, воды и заполнителей.Марку цемента выбирают в зависимости от проектной марки бетона по прочности. Чтобы получить бетон с минимальным расходом вяжущего, необходимо выяснить, какое должно быть при этом соотношение Rб/Rц. Расход цемента Ц (кг/м3) найдем, пользуясь формулой прочности бетона:Ц=(1/А*Rб/Rц+0,5)*В. Существует следующая зависимость расхода цемента от соотношения Rб/Rц. Для бетонов низких и средних марок минимальные расходы вяжущего соответствуют: Rб/Rц = 0,4–0,6 или Rц 2Rб. Соотношение Rб/Rц, близкое к 1, допустимо по необходимости для бетонов высоких марок (М500, М600-М800), когда Rб Rц. Правильное определение состава бетона имеет большое технико–экономическое значение. Для расчета состава бетона устанавливают стандартные характеристики применяемых материалов. Определение состава бетона производят обычно расчетно–экспериментальным методом, который предусматривает предварительный расчет состава по формулам и последующую экспериментальную проверку и уточнение состава с помощью пробного замеса. Расчет сводится к установлению количества цемента, воды затворения, мелкого и крупного заполнителей в кг на 1м уплотненной бетонной смеси исходя из заданных свойств смеси и прочности бетона. 1) Ц/В Количество воды затворения находят в зависимости от заданной жесткости или подвижности бетонной смеси. Вычисляют цементно–водное отношение по формулам: Rб=А* Rц (Ц/В – 0,5) для обычных бетонов с Ц/В = 1,4–2,5 и Rб=А* Rц (Ц/В + 0,5) для высокопрочных бетонов с Ц/В>2,5. Далее находят водо-цементное отношение В/Ц=1/(Ц/В). 2) В Расход цемента находят, зная количество воды затворения и водо-цементное отношение: Ц=В/(В/Ц). Если расход цемента на 1м3 бетона окажется меньше допускаемого по нормам, то количество его следует увеличить до требуемой нормы, сохранив прежнее В/Ц. Расход воды при этом пересчитывают, исходя из увеличенного расхода цемента. Минимальный расход вяжущего для бетонных конструкций – 200 кг/ м3, для железобетонных – 220 кг/ м3 и конструкций, работающих в агрессивных средах – 250 кг/ м3. 3) Расход крупного и мелкого заполнителей определяют из следующих положений: а) объем плотно уложенного бетона (принимают в расчете равным 1м3 или 1000л) без учета воздушных пустот слагается из объема зерен мелкого и крупного заполнителей и объема цементного теста, заполняющего пустоты между зернами заполнителей. Уравнение, выражающее это положение и называемое уравнением абсолютных объемов, может быть представлено в следующем виде:Ц/ц+В*П/п+К/к=1000. Б) пустоты между зернами крупного заполнителя должны быть заполнены растворной частью с учетом некоторой раздвижки зерен, величина которой определяется коэффициентом раздвижки Кразд: Ц/ц +П/п +В=К/н.к*Vпуст.кразд, где Ц, В, П, Кразд – расходы соответственно цемента, воды, песка и крупного заполнителя, кг/м3; ц , п , к – плотности этих материалов; н.к – насыпная плотность крупного заполнителя; Vпуст.к – относительный объем пустот (пустотность) крупного заполнителя, определяемый по формуле Vпуст.к =1-(н.к/к); Кразд – коэффициент раздвижки для жестких бетонных смесей, Кразд =1,05–1,15, в среднем 1,1, для подвижных смесей – по соответствующему графику в зависимости от расхода цемента и В/Ц. Формулы для определения расходов (кг/м3): К=1000/( Vпуст* Кразд/н.к+1/к) и песка П=[1000 – Ц/ц – В – К/к]* п. Таким образом получен расчетный состав бетона в виде расхода (кг/м3) компонентов: Ц, В, П, К. Он может быть выражен в относительных единицах (по отношению к массе цемента): 1: В/Ц: П/Ц: К/Ц. Состав бетона проверяют и уточняют путем пробного замеса бетонной смеси, приготовляемой из производственных материалов.

  1. Понятие о классах и марках бетона. Стандартные классы и марки тяжёлого бетона по прочности.

Марки и классы бетона. При проектировании бетонных и железобетонных конструкций назначают требуемые характеристики бетона: класс (марку) прочности, марки морозостойкости и водонепроницаемости. За проектную марку бетона по прочности на сжатие принимают сопротивление осевому сжатию (кгс/см2) эталонных образцов-кубов. За проектную марку бетона по прочности на осевое растяжение принимают сопротивление осевому растяжению (кгс/см2) контрольных образцов. Эта марка назначается тогда, когда она имеет главенствующее значение. Проектную марку бетона по прочности на сжатие контролируют путем испытания стандартных бетонных образцов: для монолитных конструкций – в возрасте 28 сут, для сборных конструкций – в сроки, установленные для данного вида изделий стандартом или техническими условиями. Прочность бетона определяют путем испытания образцов, которые изготовляют сериями; серия, как правило, состоит из трех образцов. Предел прочности при растяжении возрастает при повышении марки бетона по прочности при сжатии, однако увеличение сопротивления растяжению замедляется в области высокопрочных бетонов. Поэтому прочность бетона при растяжении составляет 1/10–1/17 предела прочности при сжатии, а предел прочности при изгибе – 1/6–1/10. Класс бетона – это числовая характеристика какого-либо его свойства, принимаемая с гарантированной обеспеченностью 0,95. Это значит, что установленное классом свойство обеспечивается не менее чем в 95 случаях из 100 и лишь в 5-ти случаях можно ожидать его не выполненным. Бетоны подразделяются на классы: В1; В1,5; В2; В2,5; В3,5; В5; В7,5; В10; В12,5; В15; В20; В25; В30; В40; В45; В50; В55; В60. Соотношение между классом и марками бетона по прочности при нормативном коэффициенте вариации =13,5% следует принять R=В/0,778, например, для класса В5 средняя прочность будет R=6,43 Мпа.

  1. Влияние производственных факторов на качество бетона (приготовление и уплотнение бетонной смеси, условия твердения бетона).

В процессе переработки исходного сырья в готовый бетонный элемент качество бетона может изменяться под воздействием ряда объективных и субъективных факторов. Совокупность этих производственных факторов можно условно разделить на группы, охватывающие все этапы бетонных работ. Первый этап — оценка качества исходных материалов и определение состава бетона. В число факторов, оказывающих решающее влияние на показатели качества бетона (прочность, долговечность, экономичность), входит качество цемента, заполнителей и воды. Качество цемента должно обеспечить получение бетона заданной прочности и долговечности. Поэтому марку цемента следует выбирать в зависимости от проектной прочности бетона, а вид цемента — в соответствии с условиями эксплуатации конструкции. Как правило, марка цемента должна быть выше требуемой прочности бетона в 1,25... 2 раза. Если марка цемента намного превышает прочность бетона, то расход цемента, рассчитанный из условия прочности, оказывается меньше необходимого по условию плотности бетона. Чтобы избежать перерасхода высокомарочного цемента, вводят в состав бетона тонкомолотую минеральную добавку. Снижение расхода цемента как наиболее дорогостоящего компонента бетона важно не только по экономическим причинам. При сокращении количества цемента уменьшается усадка бетона, возрастает его трещиностойкость. В массивных конструкциях, например гидротехнических сооружениях, большой расход цемента вызывает значительное тепловыделение, которое может привести к растрескиванию бетонного массива в результате неравномерного разогрева бетона. Вид цемента выбирают с учетом особенностей изготовления и условий эксплуатации бетона. Например, бвклротвердеюшие цементы целесообразно использовать при изготовлении сборных железобетонных изделий, так как при быстром наборе прочности ускоряется оборачиваемость металлических форм. Однако такие цементы вследствие большой экзотермии не рекомендуются для бетонов в массивных конструкциях гидротехнических сооружений. Для этих целей больше подходят смешанные цементы (пуццолановый и шлакопортландцемент). Для повышения морозостойкости бетона рекомендуется использовать цементы с органическими добавками — гидрофобный и пластифицированный. Качество заполнителей оценивают зерновым составом, содержанием пылевидных и глинистых примесей, органических растительных остатков, вредных примесей и т.д. Загрязненные заполнители подвергают промывке и классификации, рассеивая на отдельные фракции. Качество воды для изготовления бетона зависит от содержания сульфатов, хлоридов и ряда других соединений. Без предварительного испытания можно применять воду, пригодную для питья, речную и озерную воду. Второй этап — приготовление бетонной смеси и укладка ее в конструкцию. На данном этапе необходимо обеспечить приготовление однородной, хорошо перемешанной бетонной смеси, обладающей заданной удобоукладываемостыо, и плотную укладку смеси в опалубку. Здесь главными факторами, определяющими качество бетона, являются однородность смешивания компонентов и качество уплотнения бетонной смеси. Приготовление бетонной смеси включает операции дозирования и перемешивания составляющих материалов. Дозирование компонентов бетона осуществляют по массе, обычно с помощью автоматических дозаторов. Отклонения от заданной массы при дозировании на замес не должны превышать ±2 % для цемента, воды и водных растворов добавок и ±2,5 % для заполнителей. Однородность смешивания компонентов достигается выбором типа смесителя и режима перемешивания в соответствии с удобоукладываемостыо приготовляемой бетонной смеси. При смешивании материалов приходится преодолевать силы сцепления между частицами, сопротивление смеси сдвигу, а также силы тяжести. Подвижные смеси с повышенным содержанием воды и вяжущего вещества, обладающие малым сопротивлением сдвигу, перемешиваются значительно легче, чем жесткие. По принципу перемешивания бетоносмесители подразделяют на гравитационные и с принудительным перемешиванием. Гравитационные бетоносмесители выполнены в виде барабана, вращающегося вокруг горизонтальной оси. При перемешивании частицы смеси поднимаются на некоторую критическую высоту и, как только сила тяжести становится больше суммы центробежной силы и сил сцепления между частицами, они падают и, имея значительную кинетическую энергию, внедряются в бетонную смесь в нижней части смесительного барабана. Тем самым достигается эффект перемешивания. Продолжительность перемешивания определяют опытным путем в строительной лаборатории. Для этого отбирают из смесителя пробы бетонной смеси с интервалом 15...30 с, изготовляют контрольные образцы. После затвердевания бетона определяют прочность и рассчитывают коэффициент вариации прочности бетона. Чем меньше коэффициент вариации, тем более однороден бетон. Продолжительность перемешивания назначают по времени, при котором коэффициент вариации прочности бетона не превышает 4...5 %. Время перемешивания отсчитывают от момента окончания загрузки материалов в смеситель до начала выгрузки. Гравитационные смесители оказываются малопригодными для перемешивания жестких бетонных смесей; в таких случаях применяют машины принудительного перемешивания. В них компоненты смеси подвергают принудительному перемещению по весьма сложным траекториям, благодаря чему и получается однородная бетонная смесь. Продолжительность смешивания крупнозернистых смесей 2...3 мин, мелкозернистых — 3...5 мин. Качество уплотнения бетонной смеси должно быть таким, чтобы уложенный в опалубку или форму бетон обладал однородным строением с минимальным объемом вовлеченного воздуха — не более 2 %. Энергетические затраты на уплотнение тем больше, чем выше жесткость бетонной смеси. Основным способом уплотнения является вибрирование. При вибрировании частицы бетонной смеси совершают вынужденные колебания, в результате которых ослабляются силы внутреннего трения и сцепления между частицами. Бетонная смесь переходит в состояние пластично-вязкого течения и, подобно тяжелой жидкости, равномерно укладывается в форму. Для уплотнения монолитного бетона на строительной площадке применяют переносные поверхностные и глубинные вибраторы. На заводах железобетонных изделий используют эффективные комбинированные способы уплотнения бетонных смесей: вибрирование под нагрузкой, вибро-штампование, вибропрокат, прессование, трамбование. Для изготовления полых железобетонных изделий, форма которых приближается к поверхности вращения (трубы, опоры ЛЭП), применяют уплотнение с помощью центробежных сил — центрифугирование. Третий этап — твердение бетона. Уложенная в опалубку бетонная смесь благодаря гидратации цемента самопроизвольно затвердевает. Заданная проектом прочность достигается при определенном уходе за твердеющим бетоном, т.е. при создании оптимального температурно-влажностного режима твердения и защите бетона от ударов и сотрясений, которые могут нарушать еще не сложившуюся структуру. Важнейшими факторами, влияющими на качество бетона на данном этапе, являются условия и длительность твердения. Условия твердения считают нормальными, если бетон находится в теплой и влажной среде. При преждевременном высыхании или замерзании взаимодействие цемента с водой прекращается, что отрицательно сказывается на строении и свойствах бетона. Часто возникает необходимость ускорить твердение бетона. Для этой цели используют преимущественно тепловую обработку, позволяющую повысить температуру бетона при обязательном сохранении его влажности. В результате скорость взаимодействия цемента с водой значительно возрастает и прочность бетона в начальные сроки увеличивается. В качестве теплоносителя применяют пар или паровоздушную смесь с температурой 60...90 С. Прочность бетона после пропари-вания в течение 10...14 ч достигает 70...75 % марочной. Еще более ускоряет твердение бетона обработка насыщенным паром при давлении 0,8...1,2 МПа и температуре 175...190 ° С,осуществляемая в автоклавах. Однако такую обработку можно использовать только в заводских условиях, поэтому ее применяют в тех случаях, когда обычные методы ускорения твердения неэффективны, например для изделий из силикатных и ячеистых бетонов. Кроме тепловой обработки пропариванием для ускорения твердения бетона применяют электропрогрев изделий. На строительных площадках широко используют тепловую обработку с помощью инфракрасного излучения. Излучатели инфракрасных лучей нагреваются электрическим током или газом. Выделяемая ими лучистая энергия поглощается стенками опалубки либо непосредственно изделием и аккумулируется в бетоне в виде теплоты. Для ускорения твердения бетона применяют также добавки-ускорители. Введение в бетонную смесь таких добавок повышает прочность бетона в возрасте 3 сут в 2..3 раза, а к 28 сут прочность оказывается такой же, как и у бетона без добавки.

Марки и классы бетона. При проектировании бетонных и железобетонных конструкций назначают требуемые характеристики бетона: класс (марку) прочности, марки морозостойкости и водонепроницаемости. За проектную марку бетона по прочности на сжатие принимают сопротивление осевому сжатию (кгс/см2) эталонных образцов-кубов. За проектную марку бетона по прочности на осевое растяжение принимают сопротивление осевому растяжению (кгс/см2) контрольных образцов. Эта марка назначается тогда, когда она имеет главенствующее значение. Проектную марку бетона по прочности на сжатие контролируют путем испытания стандартных бетонных образцов: для монолитных конструкций – в возрасте 28 сут, для сборных конструкций – в сроки, установленные для данного вида изделий стандартом или техническими условиями. Прочность бетона определяют путем испытания образцов, которые изготовляют сериями; серия, как правило, состоит из трех образцов. Предел прочности при растяжении возрастает при повышении марки бетона по прочности при сжатии, однако увеличение сопротивления растяжению замедляется в области высокопрочных бетонов. Поэтому прочность бетона при растяжении составляет 1/10–1/17 предела прочности при сжатии, а предел прочности при изгибе – 1/6–1/10. Класс бетона – это числовая характеристика какого-либо его свойства, принимаемая с гарантированной обеспеченностью 0,95. Это значит, что установленное классом свойство обеспечивается не менее чем в 95 случаях из 100 и лишь в 5-ти случаях можно ожидать его не выполненным. Бетоны подразделяются на классы: В1; В1,5; В2; В2,5; В3,5; В5; В7,5; В10; В12,5; В15; В20; В25; В30; В40; В45; В50; В55; В60. Соотношение между классом и марками бетона по прочности при нормативном коэффициенте вариации =13,5% следует принять R=В/0,778, например, для класса В5 средняя прочность будет R=6,43 Мпа.

  1. Способы ускорения твердения бетона в конструкциях (выбор вида цемента, введение добавок-ускорителей, тепловая обработка).

Твердение бетона на современных портландцементах является процессом достаточно длительным при низкой положительной (≤+5°С) и, особенно, отрицательной температуре воздуха. Поэтому в зимний период необходимо использование технических средств, обеспечивающих ускоренное твердение бетона монолитных железобетонных конструкций. Достигнуть это можно применением активизированных или быстротвердеющих цементов, химических добавок — противоморозных и ускорителей твердения, путем повышения дозировки цемента и уменьшения водоцементного отношения или применения бетона более высокого класса по сравнению с проектной маркой.

Но самым оптимальным и экономически обоснованным, представляет собой применение тепловых методов ускорения твердения бетона. Такая технология является, в сущности, ресурсосберегающей, так как ценой обоснованных дополнительных энерго- и трудозатрат достигается возможность: сократить сроки строительства в 5–10 раз; эффективно использовать трудовые ресурсы и оборудование, в том числе капиталоемкую опалубку; применять более дешевые бездобавочные бетонные смеси; исключить вероятность замерзания бетона в раннем возрасте и гарантировать требуемое качество бетона и конструкций.

  1. Пути сокращения расхода цемента в бетоне ( на примере анализа основного закона прочности).

  2. Лёгкий бетон на пористых заполнителях. Виды заполнителей (природные и искусственные). Свойства и области применения бетонов.

Для легкого бетона используют быстротвердеющий и обычный портландцементы, а также шлакопортландцемент. Применяют в основном неорганические пористые заполнители. Для теплоизоляционных и некоторых видов конструкционно-теплоизоляционных легких бетонов используют и органические заполнители, приготовленные из древесины, стеблей хлопчатника, костры, гранулы пенополистирола и др. Неорганические пористые заполнители отличаются большим разнообразием, их разделяют на природные и искусственные. Природные пористые заполнители получают путем частичного дробления и рассева горных пород (пемзы, вулканического туфа и др.). Искусственные пористые заполнители являются продуктами термической обработки минерального сырья и разделяются на специально изготовленные и побочные продукты промышленности. Керамзитовый гравий получают путем обжига гранул, приготовленных из вспучивающихся глин. Это легкий и прочный заполнитель насыпной плотностью 250–800 кг/м3. В изломе гранула керамзита имеет структуру застывшей пены. Керамзитовый песок (зерна до 5 мм) получают при производстве керамзитового гравия, а также по методу кипящего слоя, обжигом глиняных гранул во взвешенном состоянии. Кроме того, его можно получать дроблением зерен гравия. Шлаковую пемзу изготовляют путем быстрого охлаждения расплава металлургических шлаков, приводящего к вспучиванию. Куски шлаковой пемзы дробят и рассеивают. Гранулированный металлургический шлак получают в виде крупного песка с пористыми зернами размером 5-7 мм, иногда до 10 мм. Вспученный перлит изготовляют путем обжига водосодержащих вулканических стеклообразных пород (перлитов). При температуре 950-1200°С вода выделяется и перлит увеличивается в объеме 10-20 раз. Вспученный вермикулит – пористый сыпучий материал, полученный путем обжига водосодержащих слюд. Топливные отходы образуются в качестве побочного продукта при сжигании антрацита, каменного угля, бурого угля и других видов твердого топлива. Топливные шлаки – пористые кусковые материалы, получающиеся в топке в результате спекания и вспучивания неорганических примесей, содержащихся в угле. Аглопорит получают при обжиге глиносодержащего сырья на решетках агломерационных машин. Шунгизит изготовляют обжигом шунгитовых сланцевых пород. Пористые заполнители, так же как и плотные, делят на крупные (пористый гравий или щебень) с размером кусков 5-40 мм и мелкие (пористый песок), состоящие из частиц менее 5 мм. Структура: Гранула заполнителя обволакиваются раствором. К легким бетонам могут попасть ячеистые бетоны с ρm=500–900кг/м3. Это конструкционно-теплоизоляционные бетоны. В ячеистых бетонах нет заполнителей, а структурирующую роль заполнителей играют равномерно распределенные сферические воздушные поры (0,5 – 2 мм).

Свойства легкого бетона. Качество легкого бетона оценивают двумя важнейшими показателями: классом по прочно сти и маркой по средней плотности. Наиболее важной наряду с прочностью характеристикой легкого бетона является плотность. В зависимости от назначения легкие бетоны делят на следующие группы: теплоизоляционные, конструкционно-теплоизоляционные, конструкционные. Мелкие и равномерно распределенные поры в цементном камне незначительно понижают прочность, но зато существенно уменьшают плотность и теплопроводность легкого бетона. Теплопроводность легких бетонов зависит в основном от плотности и влажности. В зависимости от теплопроводности легкого бетона толщина наружной стены может изменяться от 20 до 40 см. Наружные ограждающие конструкции из легких бетонов подвергаются воздействию попеременного замораживания и оттаивания, увлажнения и высыхания. Поэтому легкие бетоны, применяемые для наружных стен, покрытий здании, а также для конструкций мостов, гидротехнических сооружений, должны обладать определенной морозостой­костью. По морозостойкости легкие бетоны делят на марки: F25... F500; по водонепроницаемости WO,2...W1,2. Бетоны на пористых заполнителях уже успешно используют в мостостроении, гидротехническом строительстве. Водонепроницаемость плотных конструкционных легких бетонов может быть высокой. Малая водопроницаемость плотных легких бетонов подтверждается долголетней эксплуатацией возведенных из них гидротехнических сооружений. Эффективность применения: конструкции из легких бетонов отличаются высокими технико-экономическими показателями. Стены из легкого бетона в 1,3 – 2 раза легче стен из железобетонных слоистых и керамзитобетонных панелей, стоимость их также меньше. Удельные капиталовложения в строительство заводов легкого бетона на 30 – 40% меньше, чем в строительство предприятий, выпускающих аналогичные конструкции из тяжелого и легкого бетона с пористым заполнителем.

  1. Понятие о силикатных бетонах. Силикатный кирпич.

СИЛИКАТНЫЙ БЕТОН, бетон, получаемый термообработкой в автоклаве (при температуре 175 - 200ёC) смеси известково-кремнеземистого вяжущего вещества, неорганических заполнителей (обычно песка) и воды. По свойствам близок к бетону на портландцементе. Широко используется для изготовления железобетонных конструкций (стеновых блоков и панелей, перекрытий, лестничных маршей и т.д.).

Силикатный кирпич - один из самых распостраненых строительных материалов. Сфера его применения очень широка. Стоит остановится подробнее на его качествах: