Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Oxorona_atmosfernogo_povitria / Vetoshkun_Injhenernuy_zaxust_NS

.pdf
Скачиваний:
39
Добавлен:
22.02.2016
Размер:
2.52 Mб
Скачать

1.4. Основные понятия и законы термодинамики

Термодинамика - один из важнейших разделов физики и физической химии, предметом изучения которого являются:

а) основные соотношения, позволяющие рассчитать количество выделенного или поглощенного тепла в физических и химических превращениях и совершаемую при этом работу;

б) выявление возможного самопроизвольного течения процессов в определенном направлении, их равновесие.

К этому следует добавить, что термодинамика исследует также переходы энергии из одной формы в другую. Термодинамика построена на двух основных законах, называемых первым и вторым началами, и на постулате Планка, который часто рассматривают как третий закон термодинамики.

Общая характеристика термодинамического метода сводится к следующему.

Термодинамика базируется на небольшом числе крупных логических обобщений научной и практической деятельности людей. Ни один из ныне известных фактов не противоречит этим обобщениям. На их основе, используя богатый физико-математический аппарат, выводят ряд отдельных законов и физико-химических соотношений, пригодных для решения более частных и многочисленных физико-химических задач. Таким образом, термодинамика покоится на методе дедуктивного мышления (от общего - к частному).

Термодинамика не использует молекулярно-кинетических представлений, ее не интересует механизм процесса; она действует по принципу «черного ящика», когда исследуются только начальное и конечное состояния системы. В этом смысле термодинамика в высшей степени абстрактна.

Термодинамика в классической форме дает ответ лишь о направлении протекания процессов, условиях равновесия системы, ничего не сообщая о скорости процесса, времени достижения равновесия.

Термодинамика приложима только к системе с достаточно большим числом атомов или молекул, для которой действительны статистические законы. Однако ее нельзя применять к Вселенной, ибо термодинамика создана на основании обобщения опытных данных для закрытых систем и только для них безоговорочно справедлива.

Возникновение термодинамики как самостоятельной дисциплины относится к середине прошлого века, хотя некоторые ее закономерности (закон Гесса, принцип Карно) были установлены значительно раньше. Развитие различных прикладных направлений термодинамики постепенно привело, к их превращению в самостоятельные разделы, из которых можно

21

выделить общую, техническую и химическую термодинамику. В курсе технолого-экологических основ природопользования в большей степени, чем остальное, востребуется обычно знание химической термодинамики.

Предметом химической термодинамики служит термодинамическое рассмотрение явлений, относящихся к области химии.

Представление о сути термодинамического метода позволяет экологу любого профиля осознать его богатые возможности и более обоснованно оценивать разработанные с его применением и предлагаемые к применению технолого-экологические решения.

Одно из основных понятий термодинамики связано с определением «системы». Система - тело или группа тел, находящихся во взаимодействии и мысленно обособляемых от окружающей среды. Границы системы можно выбирать произвольно, в том числе физические поверхности раздела. Границы очерчивают так, чтобы исследуемая термодинамическая задача решалась правильно и наиболее легко.

По степени однородности свойств системы делят на гомогенные и гетерогенные. В последнем случае они включают несколько фаз.

По степени взаимодействия с окружающей средой различают системы изолированные и неизолированные, закрытые и открытые.

Изолированные системы - это системы, имеющие постоянный объем, через границы которых не происходит обмена веществом или анергией с окружающей средой. В противном случае мы имеем дело с неизолированной системой.

Закрытые системы не обмениваются веществом с другими системами. Их взаимодействие с ними ограничивается только передачей теплоты и работы.

Предметом термодинамического изучения являются только закрытые системы.

Состояние системы определяется ее свойствами (термодинамическими параметрами). Свойства системы зависят только от ее начального и конечного состояния и не зависят от пути перехода из одного состояния в другое. Различают интенсивные и экстенсивные свойства.

Экстенсивные свойства пропорциональны количеству вещества. К их числу относятся масса и объем системы. Если к веществу массой 1 кг или объемом 1 л добавить еще такую же массу и объем, то масса и объем объединенной системы составят 2 кг и 2 л. Другими словами, экстенсивные свойства системы являются аддитивными, т.е. суммирующимися.

Интенсивные свойства не зависят от количества вещества, не аддитивны. К ним относятся температура, давление, плотность. Исходя из

.понятия аддитивности, можно представить, что, какое бы неограниченно большое число источников тепла с температурой, например, 100°С ни бы-

22

ло составлено рядом и ни соединено тем или иным способом, температура системы не будет отличаться от 100°С.

Наиболее важными и часто используемыми свойствами системы являются давление, объем, температура и состав.

Переход системы из одного состояния в другое называют процессом. Если при его проведении изменяется состав, то такой процесс именуют

химической реакцией.

К весьма важным в термодинамике относятся понятия теплоты и работы. Они не являются функциями состояния и проявляются только при проведении процесса, служат формами передачи энергии (общей меры всех видов движения) от системы к окружающей среде и обратно. Не будучи функцией состояния, работа и теплота зависят от пути проведения процесса. В соответствии с современными термодинамическими представлениями работа есть упорядоченная форма передачи энергии, а теплота является неупорядоченной формой ее передачи.

Одним из наиболее фундаментальных термодинамических понятий является внутренняя энергия U. Она относится к параметрам состояния и в физическом смысле характеризует общий запас энергии системы, включая энергию: поступательного и вращательного движения молекул; внутримолекулярного колебательного движения атомов и атомных групп, составляющих молекулы; вращения электронов в атоме; ядер атомов и т.д., но без учета кинетической энергии тела в целом и его потенциальной энергии положения. Термодинамика еще не умеет определять абсолютную величину внутренней энергии системы, но может измерять изменение внутренней энергии U в том или ином процессе. Этого достаточно для успешного применения понятия внутренней энергии. Изменение внутренней энергии является термодинамическим параметром системы. Величина U принимается положительной, если в рассматриваемом процессе она возрастает.

Первый закон термодинамики устанавливает связь между количеством получаемой или выделяемой теплоты, количеством произведенной или полученной работы и изменением внутренней энергии системы при проведении термодинамического процесса.

Во всех случаях в закрытой термодинамической системе отношение поглощенного тепла Q к совершенной работе А есть величина постоянная (Q/A = const). Это отношение не зависит от свойств системы и пути ее перехода из одного со стояния в другое, т.е. является термодинамическим параметром, и составляет 427 кгм/ккал. При измерении Q и А в одинаковых единицах Q/A = 1, в том числе и в круговом процессе.

Таким образом, во всяком круговом процессе работа, совершенная системой, точно равна поглощенной ею теплоте. Следовательно, если в круговом процессе тепло не поглощается, то не производится и работа. Из

23

сказанного вытекает одна из наиболее ярких формулировок первого закона термодинамики: вечный двигатель первого рода невозможен.

Имеются и другие, равноценные, формулировки первого закона. Одна из них - формулировка закона сохранения энергии: если в каком-либо процессе энергия одного вида исчезает, то вместо нее в строго эквивалентном количестве появляется энергия другого вида.

Математическое выражение первого закона термодинамики может

быть дано в различных формах. Наиболее общая:

 

U = Q – A.

(1.7)

Иными словами, в любом процессе приращение внутренней энергии какой-либо системы равно сообщаемой системе теплоте за минусом работы, совершаемой системой.

Для процессов, связанных с бесконечно малыми изменениями, урав-

нение (1.7) принимает вид

 

dU = δQ - δA,

(1.8)

где dU - полный дифференциал внутренней энергии системы; δQ и δА - бесконечно малые количества теплоты и работы.

Уравнение (1.8) является базовым. Из него выводится множество формул, связывающих различные переходы одного вида энергии в другой, определяющих зависимости тепловых эффектов реакции и теплоемкостей от температуры, от пути перемещения системы из одного состояния в другое или позволяющих вычислить работу в том или ином термодинамическом процессе (изохорном, изобарном, изотермном, адиабатном).

Второй закон термодинамики показывает, в каком направлении в заданных условиях (температура, давление, концентрация и т.д.) может протекать самопроизвольно, т.е. без затраты работы извне, тот или иной процесс. Во-вторых, закон определяет предел возможного самопроизвольного течения процессов, т.е. его равновесное в данных условиях состояние.

Для различных термодинамических процессов существуют свои критерии, характеризующие направление и предел их протекания.

В общем случае самопроизвольное развитие взаимодействия между различными частями системы возможно только в направлений выравнивания интенсивных свойств (температуры, давления, электрического потенциала и др.) всех ее частей. Достижение этого состояния является пределом самопроизвольного течения процесса, условием равновесия.

Для изолированных систем критерием, определяющим самопроизвольное течение процесса, служит термодинамический параметр, получивший название энтропии S. В этих системах при протекании необратимых процессов энтропия возрастает и достигает максимальных значений

при равновесии процесса:

 

S2 – S1 > 0.

(1.9)

24

Вкурсах термодинамики показывается, что энтропия является мерой беспорядка в изолированной системе, мерой ее термодинамической вероятности, возрастающей в самопроизвольном процессе.

Внеизолированных системах о направлении процесса судят по изменению термодинамических потенциалов, также являющихся функциями состояния.

Так, для процессов, протекающих при постоянных температуре и давлении, направление и предел самопроизвольного протекания процесса оп-

ределяются с помощью изобарно-изотермического потенциала (сокра-

щенно - изобарного потенциала) или, как принято в современной физиче-

ской химии, энергии Гиббса G:

G 0.

(1.10)

Другими словами, в системе с постоянными температурой и давлением самопроизвольно могут протекать только процессы, сопровождаемые уменьшением G, а условием равновесия служит достижение некоторого минимального для данных условий значения этой функции. Реакции, которые сопровождались бы увеличением G, как самопроизвольные в принципе невозможны.

Для термодинамических процессов, протекающих при постоянной температуре и объеме, роль аналогичную энергии Гиббса выполняет энер-

гия Гельмгольца, или изохорно-изотермический потенциал (изохорный потенциал).

Второй закон термодинамики указывает направление возможного процесса, но ничего не сообщает о его скорости. Между тем термодинамически неустойчивые (метастабильные) системы могут существовать неограниченно долгое время.

Основной смысл третьего закона сводится к утверждению, что при абсолютном нуле температуры энтропия правильно образованного кристалла любого соединения в чистом состоянии равна нулю. При любом другом состоянии вещества его энтропия больше нуля.

1.5. Смачивание и капиллярные явления

Жидкости - это вещества, которые сохраняют свой объем, но не имеют постоянной формы, принимая форму сосуда, в котором находятся.

Сохранение объема жидкости показывает, что между ее молекулами действуют силы притяжения, а расстояние между молекулами меньше радиуса молекулярного взаимодействия. Иными словами, в объеме, размеры которого меньше радиуса действия сил молекулярного взаимодействия, наблюдается упорядоченное, расположение молекул жидкости. Однако в объеме с размерами больше радиуса взаимодействия сил молекулярного

25

притяжения доминируют силы броуновского движения молекул, что приводит к их хаотическому перемещению. Таким образом, все пространство, занятое жидкостью, состоит как бы из множества зародышей кристаллов, которые, однако, неустойчивы, распадаются в одном месте, но снова возникают в другом. В этом смысле говорят, что в жидкости существует ближний порядок. По своим свойствам жидкости занимают промежуточное положение между газами и твердыми телами.

Из явлений, связанных со свойствами жидкости, наиболее часто в технологических процессах имеют дело со смачиванием и капиллярными явлениями.

При контакте различных веществ с жидкостями наблюдаются различной степени силовые и физико-химические взаимодействия. Например, при опускании и вынимании стеклянной палочки в ртуть и в воду оказывается, что молекулы ртути притягиваются друг к другу сильнее, чем к молекулам стекла, а молекулы воды притягиваются друг к другу слабее, чем к молекулам стекла. Если молекулы жидкости притягиваются друг к другу слабее, чем к молекулам твёрдого вещества, то жидкость называют смачивающей это вещество. Если молекулы жидкости притягиваются друг к другу сильнее, чем к молекулам твердого вещества, то жидкость называют не смачивающей это вещество.

В целом при контакте жидкости с поверхностью твердого тела можно выделить два предельных случая: поверхность твердого тела горизонтальна, и поверхность твердого тела вертикальна.

Рассмотрим вариант с горизонтальной поверхностью.

При нанесении капли на твердую горизонтальную поверхность в атмосфере воздуха возникает периметр соприкосновения капли с поверхностью (периметр смачивания), в каждой точке которого сходятся силы поверхностного натяжения на границе твердое тело - газ, твердое тело - жидкость и жидкость - газ. Силы поверхностного натяжения действуют вдоль поверхности. Произвольная точка периметра смачивания станет точкой приложения трех указанных сил (рис. 1.1). При этом сила поверхностного натяжения σтт, действующая на границе раздела твердое тело -газ, может быть больше, равна или меньше силы поверхностного натяжения (более строго - межфазного натяжения) σтж на границе твердое - жидкое. В случае, когда σтж меньше, чем σтт, система, продвигаясь к состоянию с минимумом свободной энергии, будет стремиться заменить поверхность с большим энергетическим потенциалом σтт на поверхность раздела фаз с меньшим энергетическим потенциалом σтж, т.е. капля начнет растекаться по твердой .поверхности, смачивать ее (рис.1.1,а). Противоположная картина сложится, если σтг меньше σтж(рис. 1.1,б).

26

Рис. 1.1. Краевые углы для смачивающей (а) и несмачивающей (б) жидкостей

При достижении равновесия получим соотношение, называемое уравнением Юнга:

σтг = σтж + σжг.cosθ,

(1.11)

где θ - угол смачивания, образуемый каплей на поверхности твердого тела (измеряется со стороны жидкости).

Из рис. 1.1 следует, что при θ < 90° жидкость смачивает, а при θ > 90° не смачивает поверхность твердого тела (подложку). При полном смачивании cos θ = 1, и жидкость растекается по поверхности твердого тела. Получить на поверхности тела каплю при полном смачивании нельзя. Полное несмачивание, т.е. краевой угол равный 180°, практически не встречается, так как между жидкостью и твердым телом всегда действуют силы притяжения. Однако теоретически капля жидкости на горизонтальной поверхности твердого тела в этом случае должна иметь форму шара.

Значения краевого угла, образуемого водой на поверхности различных твердых тел, в воздушной атмосфере равны: кварц и кальцит – 0о, ма-

лахит – 17о, пирит – (26…33)о, графит – (55…60)о, тальк – 69о, сера – 78о,

парафин - 106°.

При вертикальном расположении твердой поверхности краевой угол θ также сохраняется (рис. 1.2). В варианте смачивания жидкость у краев сосуда, в который она налита, приподнимется, а при несмачивании - опустится. В узких трубках искривится вся свободная поверхность жидкости. При круглом сечении трубки эта поверхность представляет собой часть поверхности сферы, которая называется мениском. У смачивающей жидкости образуется вогнутый мениск, а у несмачивающей - выпуклый.

27

Рис. 1.2. Форма поверхности смачивающей (а) и несмачивающей (б) жидкостей и капиллярные явления в трубках

Так как площадь изогнутой поверхности мениска больше, чем площадь внутреннего сечения трубки, то жидкость, стремясь к минимуму энергии, под действием молекулярных сил будет пытаться создать плоскую поверхность. Возникает дополнительное давление Р. При смачивании (вогнутый мениск) оно направлено от жидкости, а при несмачивании (выпуклый мениск) - внутрь жидкости. Величина этого давления определена французским ученым П.Лапласом и потому его часто называют лап-

ласовским.

При погружении узкой трубки в смачивающую жидкость лапласовское давление поднимает последнюю над ее уровнем в широком сосуде с плоским мениском. При несмачивающей жидкости имеет место противоположная картина (см. рис. 1.2). Явления, обусловленные втягиванием или выталкиванием жидкости в капиллярах (трубки, диаметр которых соизмерим с диаметром волоса), называются капиллярными явлениями.

Равновесная высота h подъема (опускания) жидкости в капилляре с радиусом r определяется по формуле

h = 2σ.cosθ/(ρ.g.r), (1.12)

где σ- поверхностное натяжение жидкости; ρ - плотность жидкости; g - ускорение свободного падения.

Можно показать, что силы лапласовского давления не только поднимают и опускают жидкость в тонких капиллярах, но и стремятся притянуть (смачивающая жидкость) или оттолкнуть (несмачивающая жидкость) твердые поверхности, в контакте с которыми находятся (частицы круглой формы, параллельные пластины и т.д.).

Явления смачивания и капиллярные явления играют большую роль в природе. По капиллярам растений поднимается влага из почвы, достигая всех его частей вплоть до вершины. По капиллярам почвы влага поднимается на ее поверхность, где испаряется, а земля иссушается.

В технике смачивание и капиллярные явления в ряде случаев также играют определяющую роль, например при сушке капиллярно-пористых тел (древесина, бетон, другие строительные материалы), при окомковании мелких руд и концентратов (капиллярные силы обеспечивают получение окатышей), при обогащении полезных ископаемых, где ряд методов основан на различиях в смачиваемости компонентов руд, в процессах пропитки жидкостями различных твердых фаз, в частности огнеупоров - расплавами металлов и шлаков и т.д.

28

1.6. Коллоидные системы

Коллоидные системы представляют частный случай дисперсий, в которых поверхностные свойства вещества, отличающиеся от свойств в объеме, играют значительную роль. Сильное развитие поверхности (количественное изменение) приводит в данном случае к появлению новых качеств, новых свойств, присущих только коллоидам. Эти свойства позволяют рассматривать коллоидные системы как особое состояние вещества (качественное изменение), характеризуемое, в частности, сильным развитием адсорбционных процессов.

Дисперсные системы - это такие системы, в которых одно вещество распределено в среде другого в виде очень мелких частиц. Они состоят из двух или большего числа фаз, т.е. являются гетерогенными. Распределяемое вещество называют дисперсной фазой, а вещество, в котором распределяется дисперсная фаза, - дисперсионной средой. Частицы дисперсной фазы составляют самостоятельную фазу, обладающую некоторой поверхностью, отделяющей ее от дисперсионной среды. Разделение коллоидной системы на дисперсную фазу и дисперсионную среду достаточно условно. Обычно придерживаются правила, что дисперсионной среды должно быть больше, чем дисперсной фазы.

Размер частиц коллоидной фазы лежит в пределах 10-7…10-5 см. Верхний их предел ограничен тем, что за ним идут уже обычные молекулярные растворы, размеры отдельных молекул которых имеют порядок 10- 8 см. Нижний предел обусловлен тем, что при больших чем 10-5 см размерах коллоидные системы теряют одно из основных своих качеств - способность к тепловому (броуновскому) движению частиц дисперсной фазы в газообразной и жидкой дисперсионных средах. В связи со столь малыми размерами дисперсной фазы коллоидные системы часто называют ультра-

микрогетерогенными системами, а также коллоидными растворами.

Близки к коллоидным по свойствам и более грубые системы (размеры частиц 10-4…10-3 см), называемые микрогетерогенными.

Вуказанном диапазоне размеров коллоидные частицы полидисперсны, т.е. существенно различаются. Монодисперсные, можно получить только искусственно, пользуясь специальными приемами.

Вцелом по размерам частиц коллоидные и микрогетерогенные системы занимают промежуточное положение между молекулярнодисперсными системами (растворами) и системами с более крупными

(грубодисперсными) частицами.

Коллоидные системы весьма многообразны, отличаются по составу дисперсной фазы и дисперсионной среды, размерам, свойствам, что затрудняет их единую классификацию. Наиболее признанной является клас-

29

сификация коллоидных систем в зависимости от агрегатного состояния дисперсной фазы и дисперсионной среды, разработанная В.О. Оствальдом. Она исходит из того, что каждая из фаз коллоидной системы может существовать в любом из трех агрегатных состояний (твердом, жидком или газообразном), т.е. теоретически возможны девять комбинаций дисперсной фазы и дисперсионной среды. Практически реализуются только восемь из них, так как газы в обычных условиях растворимы друг в друге неограниченно и образуют гомогенную систему. В науке и технике каждая из возможных комбинаций дисперсной фазы и дисперсионной среды получила свое название (табл. 1.1).

 

 

 

 

Таблица1.1

Классификация дисперсных систем по агрегатному состоянию

дисперсной фазы и дисперсионной среды

 

 

Дисперсная фаза

Дисперсионная

Система

Название

 

 

среда

 

системы

 

Жидкость

Газ

Ж-Г

Туманы

 

Твердое тело

То же

Т- Г

Дым, пыли

 

Газ

Жидкость

Г-Ж

Пены,

газовые

 

 

 

 

эмульсии

 

 

Жидкость

То же

Ж-Ж

Эмульсии

 

 

Твердое тело

То же

Т-Ж

Коллоидные рас-

 

 

 

 

творы, суспензии

 

Газ

Твердое тело

Г-Т

Твердые

пены,

 

 

 

 

пористые тела

 

Жидкость

То же

Ж-Т

Твердые

эмуль-

 

 

 

 

сии

 

 

Твердое тело

То же

Т -Т

Твердые

золи,

 

 

 

 

сплавы

 

 

В коллоидной химии все системы, отвечающие коллоидной степени дисперсности, называют золями. Золи с газовой дисперсионной средой известны как аэрозоли (системы Ж-Г и Т-Г), а с жидкой - как лиозоли или гидрозоли, если дисперсионная среда представлена водой. Дисперсность аэрозолей большей частью ниже коллоидной, поэтому их правильнее было бы именовать аэродисперсными системами. По крупности аэрозоли с твердой дисперсной фазой разделяют на дымы с частицами 10-7…10-3 см и на пыли, размер частиц которых обычно больше 10-3 см. Туманы, т.е. аэрозоли с жидкой дисперсной фазой, как правило, содержат довольно крупные капельки размером 10-5…10-3 см. Аэрозоли могут иметь самую разнообразную форму: игольчатую, пластинчатую, звездообразную и, конечно, ка-

30