
- •Раздел 1. Теория статистики
- •1.1. Исходные понятия статистики
- •1.1.1. Предмет статистической науки
- •1.1.2. Методология и методы статистического исследования
- •1.1.3. Составные части статистики и их связь
- •Контрольные вопросы
- •1.2. Статистическое наблюдение
- •1.2.1. Требования к статистической информации
- •1.2.2. Организация статистического наблюдения
- •1.2.3. Виды статистического наблюдения
- •Контрольные вопросы
- •1.3. Статистическая сводка и группировка
- •1.3.1. Понятие о статистической сводке
- •1.3.2. Задачи и виды группировок
- •1.3.3. Выполнение группировки
- •1.3.4. Статистические таблицы
- •Контрольные вопросы
- •1.4. Статистические показатели
- •1.4.1. Сущность и виды показателей. Абсолютные и относительные величины
- •1.4.2. Средние величины, их сущность и их виды
- •9500 9600 9600 9600 9650 97009700 9900
- •4.3. Свойства и методы расчёта средних величин
- •Контрольные вопросы
- •1.5. Ряды распределения и графическое представление статистических данных
- •1.5.1. Ряды распределения
- •1.5.2 Графическое изображение вариационного ряда
- •1.5.3. Графическое представление статистических данных
- •Контрольные вопросы
- •1.6. Статистическое изучение вариации
- •1.6.1. Понятие вариации признака и показатели вариации
- •1.6.2. Дисперсия, её математические свойства и способы расчёта
- •1.6.3. Виды дисперсий, правило сложения дисперсий и его использование в анализе факторов
- •Контрольные вопросы
- •1.7. Статистическое изучение динамики явлений
- •1.7.1. Понятие о рядах динамики, их виды и правила построения
- •1.7.2. Аналитические показатели динамического ряда и способы их расчёта
- •1.7.3. Средние показатели в рядах динамики
- •Контрольные вопросы
- •Исследование развития явлений с помощью рядов динамики
- •1.8.1. Понятие тенденции ряда динамики и методы её выявления
- •I кв. – 9714 шт. III кв. – 11536 шт.
- •II кв. – 10115 шт. Iy кв. – 12242 шт.
- •1.8.2. Выравнивание уровней ряда динамики и типы развития социально-экономических явлений
- •1.8.3. Понятие об интерполяции и экстраполяции. Сезонные колебания
- •Контрольные вопросы
- •1.9. Индексный метод в статистических исследованиях
- •1.9.1. Назначение и виды индексов
- •1.9.2. Способы образования индексов и связь между ними
- •1.9.3. Выявление роли факторов динамики, структуры и взаиморасположения явлений индексным методом
- •Контрольные вопросы
- •1.10. Выборочный метод в статистике
- •1.10.1. Понятие о выборочном исследовании
- •1.10.2. Способы отбора единиц из генеральной совокупности и необходимая численность выборки
- •1.10.3. Способы распространения характеристик выборки на генеральную совокупность
- •Контрольные вопросы
- •1.11. Виды взаимосвязей и методы выявления корреляционных связей
- •1.11.1. Изучение взаимосвязей явлений – важнейшая задача статистики
- •1.11.2. Виды взаимосвязей
- •1.11.3. Статистические методы выявления корреляционной связи
- •Контрольные вопросы
- •1.12. Измерение взаимосвязей между явлениями
- •1.12.1. Описание взаимосвязей с помощью регрессионного анализа
- •1.12.2. Множественная регрессия
- •1.12.3. Измерение тесноты связи
- •Контрольные вопросы
1.8.3. Понятие об интерполяции и экстраполяции. Сезонные колебания
Приближенный расчет уровней, лежащих внутри ряда динамики, но почему-либо неизвестных, называется интерполяцией. Такой расчет проводится на основе данных фактически сложившихся (реальных) уровней ряда на уже сложившемся определенном промежутке времени. Например, метод аналитического выравнивания уровней ряда динамики с той или иной степенью адекватности позволяет построить аппроксимацию (приближение) основной тенденции развития ряда динамики в виде аналитической функции y(t), дающей значения неизвестных уровней, лежащих внутри этого ряда. В этом случае интерполяция есть расчет неизвестных уровней с помощью адекватной математической функции фактически сложившегося ряда динамики, описывающего социально-экономическое явление.
Однако, основной целью анализа динамических рядов является не столько описание математическими методами и приёмами уже свершившейся динамики явлений, сколько получение на основе имеющихся данных научного анализа возможного развития явления в будущем.
Составление надёжных прогнозов динамики социальной и экономической деятельности является необходимым условием устойчивости регулирования социальных и рыночных отношений. Огромное значение при этом принадлежит методу экстраполяции.
Под экстраполяцией понимается распространение выявленных в анализе рядов динамики закономерностей развития изучаемого явления на будущее. Другими словами, экстраполяция есть продление в будущее тенденции, наблюдающейся в прошлом.
Выводы по тенденции развития социально-экономических явлений, получаемые на основе экстраполяции, называют прогнозированием. Основой прогнозирования является предположение, что закономерность, действующая внутри анализируемого ряда динамики, выступающего в качестве базы прогнозирования, сохраняется и в дальнейшем.
Возможность экстраполяции обеспечивается двумя обстоятельствами:
1) общие условия, определяющие тенденцию развития в прошлом, не претерпевают существенных изменений в будущем;
2) тенденция развития явления характеризуется тем или иным аналитическим уравнением.
Большое значение при экстраполяции имеет продолжительность базисного ряда динамики и сроки прогнозирования. Установление сроков прогнозирования зависит от задачи исследования, однако, следует иметь в виду, что чем короче сроки прогноза, тем надёжнее результаты экстраполяции.
Одной из основных задач анализа рядов динамики является выявление сезонных колебаний уровней социально-экономических явлений.
Под сезонными колебаниями понимаются более или менее устойчивые внутригодовые колебания уровней развития социально-экономических явлений. Проявляются они во всех сферах жизни общества: производстве, обращении, потреблении. Поэтому статистическое изучение сезонных колебаний имеет большое практическое значение.
В условиях периодической сменяемости сезонов жизнедеятельность людей сопровождается изменениями интенсивности динамики социально-экономических процессов. В большинстве отраслей экономики это проявляется в виде внутригодовых чередований подъёмов и спадов выпуска продукции, потребления сырья и энергии, производительности труда, себестоимости, прибыли и других показателей. Для некоторых сфер деятельности внутригодовая динамика характеризуется остановкой процессов в межсезонные периоды (сельское хозяйство, рыболовство, охота, навигация, туризм и т.д.). Значительным колебаниям во внутригодовой динамике подвержены денежное обращение и товарооборот.
Сезонные периодические колебания, которые имеют определенный ипостоянный период, равный годовому промежутку, встатистике также носят название сезонной волны, а динамический ряд в этомслучае называютсезонным рядом динамики. Измерение сезонных волн проводится различными методами, основанными на применении средней арифметической, относительных величин, механического (сглаживанием средних) и аналитического выравнивания. При изучении сезонных колебаний обычно прежде всего определяют общую тенденцию развития явления, исключают ее, а потом уже исчисляют показатели сезонности и производят их анализ.
Статистические ряды
внутригодовой динамики составляются
по материалам текущей отчётности, а для
измерения сезонных колебаний обычно
исчисляются индивидуальные индексы
сезонности is.
В общем виде они определяются отношением
исходных (фактических) уровней ряда
динамики
к теоретическим (расчётным) уровням
,
выступающим в качестве базы сравнения:
В результате того, что измерение
сезонных колебаний проводится на базе
соответствующих теоретических уровней
тренда
,
в индивидуальных индексах сезонности
влияние основной тенденции развития
устраняется (элиминируется). Глубина
сезонных колебаний может определяется
как размахом индивидуальных, так и
средних индексов сезонности (в %).
Поскольку на сезонные колебания могут накладываться случайные отклонения, для их устранения производится усреднение индивидуальных индексов одноименных внутригодовых периодов анализируемого ряда динамики. Поэтому для каждого периода годового цикла определяются обобщенные показатели в виде средних индексов сезонности:
.
Для рядов внутригодовой динамики, в которых тренд отсутствует или незначителен, последняя формула приобретает вид:
,
где
i
,
– средний уровень показателя отдельного
внутригодового периода и среднегодовое
значение уровня, соответственно.