
- •3. Электротехнические материалы (проводники, полупроводники, диэлектрики).
- •4.Ферромагнитные материалы. Свойства и их применение.
- •5. Основные законы электрических цепей. Закон Ома.
- •6. Светоизлучающие диоды.
- •7. Основные законы магнитных цепей.
- •8. Фотодиоды. Основные характеристики.
- •9. Законы Кирхгофа.
- •10. Способы соединение источников электрической энергии.
- •11. Собственная электронная и дырочная электропроводность
- •12. Нелинейные электрические цепи постоянного тока
- •13. Электрические цепи с несколькими источниками. Метод контурных токов
- •14. Общие сведения о биполярных транзисторах
- •15. Основные типы диодов и их назначений
- •16. Полупроводниковые диоды. Вольтамперная характеристика
- •17. Векторные диаграммы. Цепь, содержащая активное сопротивление
- •18. Электронно-дырочный переход при прямом напряжении
- •19. Векторные диаграммы. Цепь, содержащая индуктивность
- •20. Электронно-дырочный переход при обратном напряжении
- •21. Векторные диаграммы. Цепь, содержащая емкость
- •22. Фоторезисторы. Основные физические характеристики.
- •23. Законы Кирхгофа в символической форме.
- •24. Усиление с помощью транзистора
- •25. Линейные электрические цепи несинусоидального тока. Условия их возникновения.
- •26. Краткие сведения об электрических фильтрах
- •27. Методы анализа и расчета нелинейных цепей переменного тока.
- •28. Электроизмерительные приборы. Погрешности измерений.
- •29. Тиристоры. Вах. Назначение
- •30. Номинальные величины электроизмерительных приборов.
18. Электронно-дырочный переход при прямом напряжении
При подаче на p-n-переход внешнего напряжения процессы зависят от его полярности. Внешнее напряжение, подключенное плюсом к р-области (рис. 2.2, а), а минусом к n-области, называют прямым напряжением (Uпр). Напряжение Uпр почти полностью падает на p-n-переходе, так как его сопротивление во много раз превышает сопротивление р- и n-областей.
Полярность внешнего напряжения (Unр) противоположна полярности контактной разности потенциалов (Uк), поэтому электрическое поле, созданное на p-n-переходе внешним напряжением направлено навстречу внутреннему электрическому полю. В результате этого потенциальный барьер понижается и становится численно равным разности между напряжениями, действующими на p-n-переходе (рис. 2.2, б):
j = Uк – Unр.
Вследствие разности концентраций дырок в р- и n-областях, а электронов в n- и p-областях основные носители заряда диффундируют через p-n-переход, чему способствует снижение потенциального барьера. Через p-n-переход начинает проходить диффузионный ток. Одновременно с этим основные носители заряда в обеих областях движутся к p-n-переходу, обогащая его подвижными носителями и уменьшая, таким образом, ширину (l) обедненного слоя. Это приводит к снижению сопротивления p-n-перехода и возрастанию диффузионного тока. Однако пока Unр < Uк, еще существует потенциальный барьер. Обедненный носителями заряда слой p-n-перехода имеет большое сопротивление, ток в цепи имеет малую величину.
При увеличении внешнего прямого напряжения до Uк = Unр потенциальный барьер исчезает, ширина обедненного слоя стремится к нулю. Дальнейшее увеличение внешнего напряжения при отсутствии слоя p-n-перехода, обедненного носителями заряда, приводит к свободной диффузии основных носителей заряда из своей области в область с противоположным типом электропроводности. В результате этого через p-n-переход по цепи потечет сравнительно большой ток, называемый прямым током (Iпр), который с увеличением прямого напряжения растет.
Введение носителей заряда через электронно-дырочный переход из области, где они являются основными, в область, где они являются неосновными, за счет снижения потенциального барьера называют инжекцией. В симметричном p-n-переходе инжекции дырок из р-области в n-область и электронов из n-области в р-область по интенсивности одинаковы.
При несимметричном p-n-переходе область полупроводника с малым удельным сопротивлением (большой концентрацией примеси), из которой происходит инжекция, называют эмиттером, а область, в которую инжектируются неосновные для нее носители заряда, – базой.
19. Векторные диаграммы. Цепь, содержащая индуктивность
Прохождение электрического тока по проводнику или катушки сопровождается появлением магнитного поля. Рассмотрим электрическую цепь переменного тока (рис. 54,а), в которую включена катушка индуктивности, имеющая небольшое количество витком проволоки сравнительно большого сечения, активное сопротивления которой можно считать практически равным нулю.
Под действием э.д. с. генератора в цепи протекает переменный ток, возбуждающий переменный магнитный поток. Этот поток пересекает «собственные» витки катушки и в ней возникает электродвижущая сила самоиндукции
(9)
лектродвижущая сила самоиндукции, согласно правилу Ленца, всегда противодействует причине, вызывающей ее. Так как э. д. с. самоиндукции всегда противодействует изменениям переменного тока, вызываемым э.д.с. генератора, то она препятствует прохождению переменного тока. При расчетах это учитывается по индуктивному сопротивлению, которое обозначается ХL и измеряется в омах. Таким образом, индуктивное сопротивление катушки ХL зависит от величины э. д. с. самоиндукции, а следовательно, оно, как и э.д. с. самоиндукции, зависит от скорости изменения тока в катушке (от частоты со) и от индуктивности катушки L:
(9.1)
где XL, — индуктивное сопротивление, ом,
ώ — угловая частота переменного тока, рад/сек,
L — индуктивность катушки, гн.