Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
термодинамика.docx
Скачиваний:
165
Добавлен:
21.02.2016
Размер:
1.1 Mб
Скачать

Политропный процесс

Политропный процесс – это любой произвольный процесс, протекающий при постоянной теплоемкости, т.е.

Тогда, уравнение 1-го закона термодинамики примет вид

(*) (1)

Таким образом, если C=const и CV=const, то количественное распределение теплоты между внутренней энергией и работой в политропном процессе остается постоянным (например 1:2).

Доля теплоты, расходуемой на изменение внутренней энергии рабочего тела

Доля теплоты, расходуемая на внешнюю работу,

Получим уравнение политропного процесса. Для этого воспользуемся уравнением 1-го закона термодинамики (*)

или

(**) (2)

Отсюда, из (*) и (**)

(3)

(4)

Разделив второе уравнение (4) на первое (3)

или

Введем величину , называемою показателем политропы. Тогда,

Интегрируя это выражение, получим

Это уравнение является уравнением политропы в pVдиаграмме. Показатель потлитропы n является постоянным для конкретного процесса, и может изменяться от -∞ до +∞.

Пользуясь уравнением состояния, можем получить уравнение политропы в VT и pT – диаграммах.

Из - уравнение политропы в VT- диаграмме.

Из

− уравнение политропы в pT- диаграмме.

Политропный процесс является обобщающим, а основные процессы (изохорный, изотермический, адиабатный) – частные случаи политропного процесса, каждому из которых соответствует свое значение n. Так, для каждого изохорного процесса n=±∞, изобарного n=0, изотермического n=1, адиабатного n=k .

Поскольку уравнение политропы и адиабаты одинаковы по форме и отличаются только величиной n (показатель политропы вместо k показателя адиабаты), то можем записать

  • работа политропного процесса

  • располагаемая работа политропного процесса

Теплоемкость газа из , откуда

Причем, в зависимости от n теплоемкость процесса может быть положительной, отрицательной, равной нулю и изменяется от -∞ до +∞.

В процессах C<0 всегда l>q т.е. на выполнение работы расширения, кроме подведенной теплоты расходуется часть внутренней энергии газа.

Изменение внутренней энергии политропного процесса

Теплота, сообщаемая газу в политропном процессе

Изменение энтальпии рабочего тела

Второй закон термодинамики

Первый закон термодинамики характеризирует процессы превращения энергии с количественной стороны, т.е. он утверждает, что теплота может превращаться в работу, а работа в теплоту, не устанавливая условий, при которых возможны эти превращения. Таким образом, он только устанавливает эквивалентность различных форм энергии.

Второй закон термодинамики устанавливает направленность и условия протекания процесса

Как первый закон термодинамики второй закон был выведен на основе экспериментальных данных.

Опыт показывает, что превращение теплоты в полезную работу может происходить только при переходе теплоты от нагретого тела к холодному, т.е. при наличии разности температур между теплоотдачиком и теплоприемником. Изменить естественное направление передачи теплоты на обратное можно только за счет затраты работы (например, в холодильных машинах).

Согласно 2-му закону термодинамики

  1. Невозможен процесс, при котором теплота переходила бы самопроизвольно от холодных тел к телам нагретым.

  2. Не вся теплота, полученная от теплоотдачика, может перейти в работу, а только ее часть. Часть теплоты должна перейти в теплоприемник.

Таким образом, создания устройства, которое без компенсации полностью превращала бы в работу теплоту какого-либо источника, и называемого вечным двигателем второго рода, невозможно!