Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Matlab / 3. MATLAB.doc
Скачиваний:
155
Добавлен:
20.02.2016
Размер:
473.09 Кб
Скачать

Применение оператора «:» в многомерных массивах

Оператор «:» (двоеточие) позволяет легко выполнять операции по увеличению размерности массивов. Приведем пример формирования трехмерного массива путем добавления новой страницы. Пусть у нас задан исходный двумерный массив М размером 3x3:

» М=[1 2 3; 4 5 6; 7 8 9] 

М =

1 2 3

4 5 6

7 8 9

Для добавления новой страницы с тем же размером можно расширить М следующим образом:

M(:,:,2)=[10 11 12; 13 14 15; 16 17 18]

M(:,:,1) =

1 2 3

4 5 6

7 8 9

M(:,:,2) =

10 11 12

13 14 15

16 17 18

Посмотрим, что теперь содержит массив М при явном его указании:

Как можно заметить, числа в выражениях М(:.:, 1) и М(:,: ,2) означают номер страницы.

Доступ к отдельному элементу многомерного массива

Чтобы вызвать центральный элемент сначала первой, а затем второй страницы, надо записать следующие выражения:

» M(2,2,1)

ans =

5

Таким образом, в многомерных массивах используется то же правило индексации, что и в одномерных и двумерных. Произвольный элемент, например, трехмерного массива задается как М(i,j,k), где i — номер строки, j — номер столбца и k — номер страницы. Этот элемент можно вывести, а можно присвоить ему заданное значение х: М(i,j,k)=x.

Удаление размерности в многомерном массиве

Мы уже отмечали возможность удаления отдельных столбцов присвоением им значений пустого вектора-столбца [ ]. Этот прием нетрудно распространить на страницы и вообще размерности многомерного массива. Например, первую страницу полученного массива М можно удалить следующим образом:

» М(:,:,1)=[ ]

Численные методы

Элементарные средства решения СЛУ

Решение систем линейных уравнений (СЛУ) относится к самой массовой области применения матричных методов. В этом разделе вы найдете ответы на вопросы, каким образом применяются указанные методы и какие дополнительные функции имеет система MATLAB для решения систем линейных уравнений.

Как известно, обычная СЛУ имеет вид:

а11X112,X2...+ а1nXn=b1

Здесь а11, a12,..., аппкоэффициенты, образующие матрицу А, которые могут иметь действительные или комплексные значения, x1, х2,..., хпнеизвестные, образующие вектор X, и b1, b2,..., bпсвободные члены (действительные или комплексные), образующие вектор В.

Эта система может быть представлена в матричном виде как АХ=В, где А — матрица коэффициентов уравнений, X — искомый вектор неизвестных и В — вектор свободных членов. В зависимости от вида матрицы А и ее характерных особенностей MATLAB позволяет реализовать различные методы решения.

Для реализации различных алгоритмов решения СЛУ и связанных с ними матричных операций применяются следующие операторы: +,-,*,/, \, ^, '.

Как отмечалось ранее, MATLAB имеет два различных типа арифметических операций — поэлементные и для массивов (векторов и матриц) в целом. Матричные арифметические операции определяются правилами линейной алгебры.

Арифметические операции сложения и вычитания над массивами выполняются поэлементно. Знак точки «.» отличает операции над элементами массивов от матричных операций. Однако, поскольку операции сложения и вычитания одинаковы для матрицы и элементов массива, знаки «.+» и «.-» не используются. Рассмотрим другие операторы и выполняемые ими операции:

  • * — матричное умножение;

  • С = А*В — линейное алгебраическое произведение матриц А и В:

Для случая нескалярных А и В число столбцов матрицы А должно равняться числу строк матрицы В.

Скаляр может умножаться на матрицу любого размера.

  •  / — правое деление. Выражение Х=В/А дает решение ряда систем линейных уравнений АХ=В, где А — матрица размера тхп и В — матрица размера nx1;

  •  \ — левое деление. Выражение Х=В\А дает решение ряда систем линейных уравнений ХА=В, где А — матрица размера тхп и В — матрица размера nx1. Если А — квадратная матрица, то А\В — примерно то же самое, что и inv(A)*B, в остальных случаях возможны варианты, отмеченные ниже.

Если А — матрица размера пхп, а В — вектор-столбец с п компонентами или матрица с несколькими подобными столбцами, тогда Х=А\В — решение уравнения АХ=В, которое находится хорошо известным методом исключения Гаусса.

  • ^возведение матрицы в степень. Х^р — это X в степени р, если р — скаляр. Если р — целое число, то степень матрицы вычисляется путем умножения X на себя р раз. Если р — целое отрицательное число, то X сначала инвертируется. Если X — скаляр и Р — матрица, то Х^Р — это скаляр X, возведенный в матричную степень Р. Если X и Р — матрицы, то Х^Р становится некорректной операцией и система выдает сообщение об ошибке. Возможный вариант решения матричного уравнения АХ=В с применением оператора ^ можно представить как Х=В*А^-1.

  •  ' — транспонирование матрицы, то есть замена строк столбцами и наоборот. Например, А' — транспонированная матрица А. Для комплексных матриц транспонирование дополняется комплексным сопряжением. Транспонирование при решении СЛУ полезно, если в матрице А переставлены местами столбцы и строки.

При записи СЛУ в матричной форме необходимо следить за правильностью записи матрицы А и вектора В. Пример (в виде m-файла):

A=[2 1 0 1; 1 -3 2 4; -5 0 -1 -7; 1 -6 2 6];

B=[8 9 -5 0];

X1=B/A

X2=B*A^-1

X3=B*inv(A)

Эта программа выдает результаты решения тремя способами:

X1 =

3.0000 -4.0000-1.00001.0000

Х2 =

3.0000 -4.0000-1.00001.0000

X3 =

3.0000 -4.0000-1.00001.0000

Как и следовало ожидать, результаты оказываются одинаковыми для всех трех методов.

Соседние файлы в папке Matlab
  • #
    20.02.2016473.09 Кб1553. MATLAB.doc
  • #
    20.02.201635.74 Mб88Инженерные расчеты в Mathcad Макаров 2005.djvu