- •1. Факторы, влияющие на жизнедеятельность
- •2 Гигиена жизнедеятельности и техника безопасности
- •3. Система обеспечения безопасности жизнедеятельности, охрана труда в строительстве и среда обитания
- •1.1. Система факторов влияющих на жизнедеятельность
- •1.2 Микроклимат и его влияние на жизнедеятельность
- •Влияние параметров микроклимата на самочувствие человека
- •Гигиеническое нормирование параметров микроклимата производственных помещений
- •1.3 Влияние освещенности на жизнедеятельность
- •Системы и виды производственного освещения
- •1.4 Влияние шума на жизнедеятельность
- •1.5 Влияние вибрации на жизнедеятельность
- •1.6 Неионизирующие электромагнитные излучения
- •Оптическое излучение
- •1.7 Влияние на деятельность человека электромагнитных полей промышленной частоты и радиоволн Электромагнитные поля промышленной частоты
- •Бытовые источники электромагнитных полей
- •Электромагнитные поля радиочастот
- •1.8 Влияние на деятельность человека теплового и лазерного излучений Тепловое излучение
- •Лазерное излучение
- •1.9 Виды ионизирующих излучений
- •1.10 Активность Источников ионизирующих излучений
- •1.11 Дозовые характеристики ионизирующих излучений
- •1.12 Связь активности и мощности дозы
- •1.13 Фоновое облучение человека
- •1.14 Требования к ограничению облучения
- •1.15 Загрязнение среды обитания токсичными веществами
- •1.16 Вредные вещества
- •Классификация по характеру отравления
- •Классификация химических веществ по токсичности
- •Классификация химических веществ по степени их опасности
- •Токсические свойства
- •1.17 Опасные биологические вещества
- •2.1. Методы защиты
- •2.2 Методы снижения неблагоприятного воздействия микроклимата
- •Ионный состав воздуха
- •2.3 Вентиляция. Системы естественной вентиляции
- •Естественная вентиляция
- •2.4 Вентиляция. Системы механической вентиляции
- •Кондиционирование воздуха
- •2.5 Защита от вибрации
- •2.6 Защита от шума Способы уменьшения шума
- •2. Следующим способом снижения шума является изменение направленности его излучения.
- •2.7 Электромагнитная безопасность
- •2.8 Обеспечение безопасности при работе с компьютером
- •2.9 Действие электрического тока на человека
- •Оказание первой помощи пораженному электрическим током
- •2.10 Факторы, определяющие исход поражения электрическим током
- •5. Путь тока через тело человека (петля тока)
- •8. Контакт в точках акупунктуры
- •9. Фактор внимания
- •11.Условия внешней среды.
- •12.Схема включения человека в цепь тока.
- •2.11 Защита человека от поражения электрическим током
- •Средства защиты
- •2.12 Защита от Статического электричества
- •2.13 Молниезащита
- •2.14 Безопасность работы оборудования под давлением
- •2.15 Пожарная и взрывная безопасность
- •2.16 Средства коллективной защиты
- •2.17 Средства индивидуальной защиты
- •3.1. Система обеспечения безопасности жизнедеятельности
- •Законодательная база
- •3.2 Обеспечение санитарно-эпидемиологического благополучия населения
- •Система обеспечения санитарно-эпидемиологического благополучия населения
- •3.3 Обеспечение экологической безопасности Обеспечение экологической безопасности Понятия и требования правовых актов в области охраны окружающей среды
- •Система обеспечения охраны окружающей среды
- •3.4 Защита населения и территорий от чрезвычайных ситуаций
- •Мероприятия рсчс
- •3.5 Гражданская оборона страны
- •Задачи в области гражданской обороны
- •Обязанности по гражданской обороне
- •Руководство гражданской обороной
- •1. Руководство гражданской обороной
- •3.6 Основы охраны труда Понятия и требования правовых актов в области охраны труда
- •3.7 Система нормативно-правовых актов по охране труда Законодательная база по вопросам охраны труда
- •Виды нормативных правовых актов по вопросам охраны труда
- •3.8 Система стандартов безопасности труда
- •3.9. Структура системы охраны труда
- •Служба охраны труда в организации
- •Инструктажи по охране труда
- •3.12 Охрана труда в проектной документации
- •3.13 Охрана труда при проектировании строительного генерального плана
- •3.14 Организация безопасности труда на строительной площадке
- •3.15 Безопасная эксплуатация строительных машин Причины травматизма и профессиональных заболеваний при эксплуатации строительных машин
- •Устройства безопасности при эксплуатации основных грузоподъемных машин
- •Регистрация и освидетельствование подъемных механизмов и вспомогательных приспособлений
- •Обязанности организации эксплуатирующей строительные машины
- •3.16 Пожарная безопасность при разработке генеральных планов Противопожарные требования при разработке генерального плана промышленного предприятия
- •Противопожарные требования при разработке генеральных планов населенных мест
- •3.17 Вынужденная эвакуация людей из зданий
Электромагнитные поля радиочастот
Основными источниками электромагнитных полей (ЭМП) радиочастот являются радиотехнические объекты (РТО), телевизионные и радиолокационные станции (РЛС), термические цеха и участки (в зонах, примыкающих к предприятиям).
РАДИОВОЛНЫ, электромагнитные волны с частотой меньше 6000 ГГц (с длиной волны l больше 100 мкм). Радиоволны с различной l отличаются по особенностям при распространении в околоземном пространстве и по методам генерации, усиления и излучения. Их делят на сверхдлинные (l > 10 км), длинные (10-1 км), средние (1000-100 м), короткие (100-10 м) и УКВ (l < 10 м). УКВ, в свою очередь, подразделяются на метровые, дециметровые, сантиметровые, миллиметровые и субмиллиметровые волны.
Зоны с повышенными уровнями ЭМП, источниками которых могут быть РТО и РЛС, имеют размеры до 100...150 м. При этом даже внутри зданий, расположенных в этих зонах, плотность потока энергии, как правило, превышает допустимые значения.
Электромагнитное поле обладает определенной энергией, характеризующейся плотностью потока энергии.
Практически плотность потока энергии J (Вт/м2) в зависимости от расстояния r (м) до излучателя в воздухе определяется через мощность излучения радиотехнического устройства P (Вт) и коэффициент усиления излучающей антенны G:
(4.3) | |
(4.4) |
При распространении в воздухе или вакууме Е = 377×Н.
При G = 1,
[В/м] |
(4.5) |
E – напряженность электрического поля;
Н – напряженность магнитного поля;
r – расстояние от источника излучения до места измерения напряженности.
Пространство около излучающей электромагнитное поле антенны или другого проводника с переменным током принято условно разделять на две зоны:
— ближнюю (зону индукции);
— дальнюю (волновую зону, или зону излучения).
В волновой зоне на расстоянии r>λ/2π (λ — длина волны) производят оценку излучаемой энергии по плотности энергии J (Вт/м2).
В зоне индукции оценивают раздельно напряженности электрического поля Е (В/м) и магнитного поля Н (А/м).
Источниками излучения электромагнитной энергии радиочастот в промышленности могут являться установки электротермии, работа которых основана на применении токов радиочастот для нагревания металлов при закалке, плавке, пайке, сварке, отжиге и других технологических процессах, а также диэлектриков при сушке и склейке изделий из древесины, сварке пластиков, спекании и др.
Эксплуатация и изготовление устройств радиосвязи, радиовещания, телевидения, радиолокации, радионавигации, радиоастрономии, медицинских аппаратов физиотерапии и др. также могут быть связаны с облучением обслуживающего персонала.
При воздействии электромагнитных полей на организм человека энергия поля поглощается тканями человека, что ведет к колебанию содержащихся в них ионов и дипольных молекул воды. Ионы тканей приходят в движение, так как в тканях возникают высокочастотные токи, сопровождающиеся тепловым эффектом. Наибольшему воздействию электромагнитного поля подвержены головной и спинной мозг, глаза.
Ранние признаки воздействия ВЧ, УВЧ и СВЧ — легкая утомляемость, изменения в крови. Исследования лиц, длительно работающих в зоне действия ЭМП радиочастоты, подтверждают кумуляцию (накопление) биологического эффекта даже при малых интенсивностях облучения.