Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
нарисна_геометрія / нарисна геометрія.rtf
Скачиваний:
262
Добавлен:
20.02.2016
Размер:
10.5 Mб
Скачать

1.2 Проекції точки на три взаємно перпендикулярні площини проекцій

Щоб отримати ортогональні проекції точки на три взаємно перпендикулярні площини проекцій, необхідно через точку простору послідовно провести перпендикуляри на горизонтальну, фронтальну та профільну площини проекцій (рис. 1.4). У перетині проведених перпендикулярів з кожною з площин проекцій одержують ортогональні проекції точки А: горизонтальну (А1), фронтальну (А2) та профільну (А3) проекції точок.

Рисунок 1.4 – Проекції точки на три площини проекцій

На рисунку 1.4 використані такі позначення: П1, П2, П3 – відповідно горизонтальна, фронтальна та профільна площини проекцій; О – початок координат; Х, У, Z – осі координат; А – точка у просторі; А1, А2, А3 – проекції точки А відповідно на П1, П2, П3.

Для побудови комплексного креслення (епюр Монжа) необхідно площину П2 залишити без змін, площину П1 розвернути на 900 вниз, а площину П3 розвернути на 900 на право до суміщення з площиною П2 (рис. 1.5). Послідовно виміряти та відкласти на відповідних осях абсцису, ординату та аплікату точки А.

Рисунок 1.5 – Епюр Монжа

1.3 Основні властивості ортогонального проеціювання

  1. Положення точки у просторі визначається трьома її координатами (X, Y, Z).

  2. Горизонтальна проекція точки визначається її абсцисою (Х) та ординатою (У), фронтальна проекція точки – її абсцисою (Х) та аплікатою (Z), профільна проекція точки – її ординатою (У) та аплікатою (Z).

Наслідки:

  1. Віддалення точки від площин проекцій визначається відповідними координатами:

  • координатою Х – від площини П3;

  • координатою У – від площини П2;

  • координатою Z – від площини П1.

  1. Однойменні проекції точок знаходяться на одній лінії проеційного зв’язку, перпендикулярній до відповідної осі.

  2. Положення точки у просторі визначається двома її проекціями, тому за двома проекціями точки завжди можна побудувати її третю проекцію.

Приклад 1 За двома проекціями точки А визначити її третю проекцію.

а) б) в)

Рисунок 1.6 – Побудова третьої проекції точки

За умовами задачі дані дві проекції точки: фронтальна та профільна (рис. 1.6а). Для побудови горизонтальної проекції точки А необхідно з фронтальної проекції точки провести лінію проеційного зв’язку, перпендикулярну до осі Х (рис. 1.6б), на якій відкласти ординату точки (рис. 1.6в), яка виміряється на профільній площині проекцій (відстань позначено двома штрихами).

Аналогічно можна побудувати фронтальну проекцію точки за її горизонтальною та профільною проекціями або профільну проекцію точки за горизонтальною та фронтальною проекціями.

2. Проекції прямої

Положення прямої у просторі визначається положенням двох точок, які їй належать. Тому для побудови комплексного креслення прямої достатньо мати проекції двох точок, які їй належать (рис. 1.7).

Рисунок 1.7 – Проекції прямої лінії

2.1 Положення прямої відносно площин проекцій

Залежно від положення прямої відносно площин проекцій прямі поділяють на прямі загального положення та особливого положення.

Прямими загального положення називають прям, не паралельні жодній з площин проекцій (рис. 1.7).

Прямі особливого положення поділяють на прямі рівня та прямі проеціювальні.

Прямі рівня – це прямі, які паралельні одній з площин проекцій. Залежно від того, якій площині проекцій пряма паралельна, їх поділяють на прямі горизонтального, фронтального та профільного рівня. На рисунку 1.8 наведені приклади прямих рівня: АВ – фронтальна пряма рівня, CD – горизонтальна пряма рівня, EF – профільна пряма рівня.

Рисунок 1.8 – Прямі рівня

Прямі проеціювальні (рис. 1.9) – це прямі, які паралельні одночасно двом площинам проекцій, тобто перпендикулярні до третьої, на яку вони проектуються у вигляді точки. Залежно від того, до якої площини проекцій прямі перпендикулярні, їх називають горизонтально-проеціювальними (відрізок EF), фронтально-проеціювальними (відрізок CD) та профільно-проеціювальними (відрізок AB).

Рисунок 1.9 – Прямі проеціювальні

Комплексне креслення (епюр Монжа) проеціювальних прямих наведене на рисунку 1.10.

Рисунок 1.10 – Комплексне креслення проеціювальних прямих

Соседние файлы в папке нарисна_геометрія