
- •Лекция 1 Цель преподавания дисциплины
- •Терминология
- •Философские аспекты проблемы систем ии (возможность существования, безопасность, полезность).
- •История развития систем ии.
- •Лекция 2 Различные подходы к построению систем ии
- •Вспомогательные системы нижнего уровня (распознавание образов зрительных и звуковых, идентификация, моделирование, жесткое программирование) и их место в системах ии
- •Лекция 3 Понятие образа
- •Проблема обучения распознаванию образов (оро)
- •Геометрический и структурный подходы.
- •Гипотеза компактности
- •Обучение и самообучение
- •Лекция 4: Адаптация и обучение
- •Персептроны
- •Нейронные сети История исследований в области нейронных сетей
- •Модель нейронной сети с обратным распространением ошибки (back propagation)
- •Нейронные сети: обучение без учителя
- •Нейронные сети Хопфилда и Хэмминга
- •Метод потенциальных функций
- •Метод группового учета аргументов мгуа Метод наименьших квадратов
- •Общая схема построения алгоритмов метода группового учета аргументов (мгуа)
- •Алгоритм с ковариациями и с квадратичными описаниями
- •Метод предельных упрощений (мпу)
- •Коллективы решающих правил
- •Лекция 5: Методы и алгоритмы анализа структуры многомерных данных
- •Иерархический кластерный анализ
- •Стандартизация
- •Быстрый кластерный анализ
- •Кластерный анализ
- •Иерархическое группирование
- •Лекция 6: Логический подход к построению систем ии Неформальные процедуры
- •Алгоритмические модели
- •Продукционные модели
- •Режим возвратов
- •Логический вывод
- •Зависимость продукций
- •Продукционные системы с исключениями
- •Язык Рефал
- •Лекция 7: Экспертные системы Экспертные системы, базовые понятия
- •Экспертные системы, методика построения
- •Этап идентификации
- •Этап концептуализации
- •Этап формализации
- •Этап выполнения
- •Этап тестирования
- •Этап опытной эксплуатации
- •Экспертные системы, параллельные и последовательные решения
- •Пример эс, основанной на правилах логического вывода и действующую в обратном порядке
- •Часть 1.
- •Лекция 8: Машинная эволюция Метод перебора как наиболее универсальный метод поиска решений. Методы ускорения перебора
- •Эволюция
- •Генетический алгоритм (га)
- •Как создать хромосомы?
- •Как работает генетический алгоритм?
- •Эволюционное (генетическое) программирование
- •Автоматический синтез технических решений
- •Поиск оптимальных структур
- •Алгоритм поиска глобального экстремума
- •Алгоритм конкурирующих точек
- •Алгоритм случайного поиска в подпространствах
- •Некоторые замечания относительно использования га
- •Лекция 9. Автоматизированный синтез физических принципов действия. Синтез речи Фонд физико-технических эффектов
- •Синтез физических принципов действия по заданной физической операции
- •Заключительные замечания
- •Слабосвязанный мир
- •Разделяй и властвуй
- •Синтез речи
- •Голосовой аппарат человека
- •Структура языка
- •Технология
- •Методы синтеза
- •Волновой метод кодирования
- •Параметрическое представление
- •Синтез по правилам
- •Конвертация текста в речь
- •Система преобразования текста в речь miTalk
- •Анализ текста
- •Морфологический анализ
- •Правила "буква-звук" и лексическое ударение
- •Парсинг
- •Модификация ударения и фонологические уточнения
- •Просодическая рамка
- •Синтез фонетических сегментов
- •Оценка синтетической речи
Алгоритм конкурирующих точек
Алгоритм конкурирующих точек в общем виде включает следующие операции.
По процедуре СДС синтезируется
точек
, в которых определяется значение минимизируемой функции (критерия сравнения). Из этих
точек отбирается
точек, имеющих наилучшие значения критерия, которые в дальнейшем называются основными. Запоминается наихудшее значение критерия основных точек
. При этом считается, что совершен нулевой глобальный (групповой) шаг поиска (t = 0).
Таким образом, на t -м групповом шаге поиска имеем основные точки
-
( 10)
и, соответственно, невозрастающую последовательность чисел
-
( 11)
Каждая основная точка делает шаг локального поиска, в результате чего точки (10) переходят в новую последовательность
( 12)
Синтезируется
дополнительных допустимых точек, каждой из которых разрешается сделать t+1 шагов локального поиска при условии, что после каждого шага с номером
ее критерий не хуже, чем соответствующий член последовательности (11). При нарушении этого условия точка исключается и не участвует в дальнейшем поиске глобального экстремума. Таким образом, имеется
дополнительных точек, сделавших t+1 шаг локального поиска:
( 13)
Среди точек (12) и (13) отбирается
точек с лучшими критериями:
( 14)
которые являются основными на t+1 -м групповом шаге поиска. Значение худшего критерия точек из последовательности (14) дополняет последовательность (11) числом
.
Цикл по пп. 2—4 повторяется до нахождения глобального экстремума по заданным условиям прекращения поиска. В качестве условий прекращения поиска могут быть использованы, например, выполнение заданного числа Т групповых шагов.
Считая параметры независимыми
от i,
будем иметь только два настраиваемых
параметра алгоритма;
—
число основных точек и
—
число дополнительных точек.
Проведенные исследования
позволяют рекомендовать следующие
оптимальные значения этих параметров: ,
.
Для простоты реализации алгоритма можно
брать постоянные значения
и
.
В качестве процедуры ШЛП рекомендуется использовать следующие алгоритмы поиска локального экстремума:
алгоритм случайного поиска в подпространствах;
алгоритм случайного поиска с выбором по наилучшей пробе;
алгоритм сопряженных градиентов;
алгоритм Нельдера-Мида.
Алгоритм случайного поиска в подпространствах
Рекомендуемый алгоритм случайного поиска в подпространствах можно записать в виде следующих рекуррентных выражений:
;
при
.
Здесь h —
число последовательно неудачных шагов
поиска; определяется
по формуле:
где a —максимальная величина рабочего шага поиска;
—
вектор случайных чисел;
—
векторы приращений на (i-1)-,
i-, (i+1) -м
шагах поиска;
—
векторы, описанные по формуле (1);
—
значения критериев качества после
осуществления на (i-1)-,
i-, (i+1) -го
шагов поиска.
Вектор случайных чисел
где —
случайное равномерно распределенное
число, выбираемое из интервала [-1,
1] ; k и L —случайные
целые числа, распределенные на отрезке [1,
n] и
упорядоченные соотношением
.
Имеются и другие модификации этого алгоритма, которые могут оказаться более эффективными.