
- •Физическая химия дисперсных систем Определение дисперсных систем
- •Классификация дисперсных систем и их общая характеристика
- •Классификация дисперсных систем по агрегатному состоянию вещества дисперсной фазы и дисперсионной среды
- •Классификация по взаимодействию между частицами дисперсной фазы или степени структурированности системы
- •Классификация по характеру взаимодействия дисперсной фазы с дисперсионной средой
- •Методы получения дисперсных систем
- •Диспергирование жидкостей
- •Диспергирование газов
- •Конденсационные методы
- •Методы физической конденсации
- •Методы химической конденсации
- •Очистка золей
- •Компенсационный диализ и вивидиализ
- •Молекулярно-кинетические свойства золей
- •Броуновское движение
- •Диффузия
- •Седиментация в золях
- •Осмотическое давление в золях
- •Оптические свойства золей
- •Рассеяние света (опалесценция)
- •Оптические методы исследования коллоидных систем Ультрамикроскоп
- •Механизм образования и строение коллоидной частицы – мицеллы
- •1. Получение золя берлинской лазури:
- •2. Получение с помощью гидролиза FeCl3 золя гидроксида железа (III).
- •3. Получение золя As2s3:
- •Электрокинетические свойства золей
- •Устойчивость гидрофобных коллоидных систем. Коагуляция золей Виды устойчивости золей
- •Теория коагуляции Дерягина-Ландау-Фервея-Овербека
- •Влияние электролитов на устойчивость золей. Порог коагуляции. Правило Шульца-Гарди
- •Чередование зон коагуляции
- •Коагуляции золей смесями электролитов
- •Скорость коагуляции
- •Коллоидная защита
- •Роль процессов коагуляции в промышленности, медицине, биологии
- •Растворы высокомолекулярных соединений
- •1) Своеобразное тепловое движение частиц растворенного вещества, схожее с броуновским движением мицелл в золях;
- •Общая характеристика высокомолекулярных соединений
- •Классификация полимеров
- •Набухание и растворение вмс
- •Термодинамические аспекты процесса набухания
- •Давление набухания
- •Свойства растворов высокомолекулярных соединений
- •Осмотическое давление растворов вмс
- •Онкотическое давление крови
- •Вязкость растворов полимеров
- •Свободная и связанная вода в растворах
- •Полиэлектролиты
- •Факторы, влияющие на устойчивость растворов полимеров. Высаливание
Полиэлектролиты
Многие природные и синтетические полимеры содержат в составе элементарных звеньев своих макромолекул различные ионогенные функциональные группы, способные диссоциировать в водных растворах. Такие вещества называются высокомолекулярными электролитами, или полиэлектролитами.При их диссоциации образуются небольшие подвижные ионы и многозарядный полимерный макроион. По характеру диссоциации ионогенных групп полиэлектролиты можно разбить на следующие 3 вида.
1. Полиэлектролиты, содержащие в своем составе только кислотные группы, диссоциирующие с отщеплением иона Н+, например –COOH, –SO3H, –SH.Из природных полимеров к таким полиэлектролитам относятся агар, окисленный крахмал, пектин. В состав макромолекул агара входят сульфогруппы, а элементарные звенья окисленного крахмала и пектина содержат карбоксильные группы. В некоторых полимерах ион водорода в этих группах может быть замещен на катион металла.
2. Полиэлектролиты, макромолекулы которых содержат только основные группы, например, аминогруппу –NH2.Среди биополимеров таких соединений нет. Данные полиэлектролиты получают синтетическим путем. К ним относятся многие анионообменные смолы (аниониты), имеющие большое практическое значение.
3. Полиэлектролиты, в макромолекулах которых чередуются кислотные и основные группы.Такие полиэлектролиты можно назвать полимерными амфотерными электролитами, или полиамфолитами. К ним относятся самый сложный и самый важный для живых организмов класс полимеров – белки.
Наличие в макромолекулах белков двух свободных ионогенных групп: основной –NH2и кислотной –COOH– придает им амфотерные свойства. В водных растворах белок может диссоциировать и как кислота, и как основание:
Pt–COOH ↔ Pt–COO– + H+
Pt–NH2 + HOH ↔ Pt–NH3+ + OH–
В кислой среде, содержащей избыток ионов Н+, ионизация СООН-групп будет подавлена и макромолекула белка приобретет положительный заряд за счет ионизации аминогрупп.
В щелочной среде, наоборот, будет подавляться процесс протонирования NH2-групп, зато практически полностью продиссоциируют СООН-группы. Белок будет вести себя как кислота и его молекулы приобретут отрицательный заряд.
Очевидно, должна существовать такая концентрация ионов Н+ в растворе, при которой число ионизированных кислотных групп в молекуле белка будет равно числу ионизированных основных групп. Суммарный же электрический заряд такой макромолекулы станет равным нулю. Данное состояние белка в водном растворе называется изоэлектрическим состоянием, а значение рН раствора, при котором молекула белка находится в изоэлектрическом состоянии, его изоэлектрической точкой (I).
Большинство природных белков содержит в пептидной цепи значительные количества остатков дикарбоновых аминокислот (аспарагиновой, глутаминовой). Такие белки называются кислотными. Изоэлектрическая точка кислотных белков лежит в области рН < 7. Для ее достижения в раствор белка нужно ввести некоторое количество сильной кислоты, чтобы подавить диссоциацию части карбоксильных групп.
Нейтральныебелки содержат в своих макромолекулах примерно равное количество кислотных и основных групп. Они переходят в изоэлектрическое состояние непосредственно в ходе своего растворения и не требуют для этого добавления сильной кислоты либо щелочи. Для нихI≈ 7.
В молекулах оснóвныхбелковNH2-групп содержится больше, чем кислотных. Для перевода их в изоэлектрическое состояние в раствор нужно добавить какое-то количество щелочи, чтобы депротонировать избыточные оснóвные группы. Соответственно электрическая точка основных белков лежит в области рН > 7.
От реакции среды и характера диссоциации белковой молекулы зависит ее форма в растворе. При диссоциации ионогенных групп только по кислотному или только по основному типу в изогнутой спиралью пептидной цепи появятся одноименные заряды, распределенные по всей ее длине. За счет возникающих электростатических сил расталкивания соседние витки спирали будут стремится удалиться друг от друга. В результате этого макромолекула будет растягиваться.
В изоэлектрическом состоянии вдоль пептидной цепи чередуются заряды противоположного знака, способствующие сжатию молекулы или даже скручиванию ее в глобулу (рис. 79б).
Рис. 79. Форма макромолекулы белка в кислой среде (а), в изоэлектрической точке(б) и в щелочной среде(в)
Таким образом, в изоэлектрическом состоянии молекулы белка в растворе занимают наименьший объем. С увеличением или уменьшением рН молекулы распрямляются.
Объем макромолекул белков влияет на вязкость их растворов. В изоэлектрическом состоянии она должна быть минимальной (рис. 80). На этом свойстве растворов белков основан один из способов определения их изоэлектрической точки. Ее опытным путем можно определить еще и электрофоретическим методом. Аналогично изменению вязкости в зависимости от рН раствора протекает и процесс набухания белков. В изоэлектрической точке степень набухания белка минимальна.
Рис. 80. Зависимость вязкости раствора белка от рН среды: А – изоэлектрическая точка белка