
- •Предисловие
- •Химическая термодинамика, как теоретическая основа биоэнергетики Предмет, методы и основные понятия химической термодинамики
- •Термодинамические системы: изолированные, закрытые, открытые, гомогенные, гетерогенные
- •Термодинамические параметры
- •Внутренняя энергия системы
- •Форма обмена энергии с окружающей средой
- •Первое начало термодинамики. Тепловые эффекты химических реакций
- •1. В изолированной системе сумма всех видов энергии есть величина постоянная.
- •Изобарный и изохорный процессы. Энтальпия. Тепловые эффекты химических реакций
- •Термохимия. Закон Гесса
- •Влияние температуры и давления на тепловой эффект реакции
- •Использование закона Гесса в биохимических исследованиях
- •Энтропия. Второй закон термодинамики Энтропия
- •Второе начало термодинамики. Свободная энергия Гиббса
- •Принцип энергетического сопряжения
- •Химическое равновесие Обратимые и необратимые реакции. Константа равновесия
- •Смещение химического равновесия. Принцип Ле-Шателье
- •Учение о растворах Растворы
- •Физические свойства н2о и строение ее молекул
- •Механизм образования растворов
- •Растворимость веществ. Факторы, влияющие на растворимость
- •Влияние природы веществ на растворимость
- •Влияние давления на растворимость веществ
- •Влияние температуры на растворимость веществ
- •Влияние электролитов на растворимость веществ
- •Взаимная растворимость жидкостей
- •Способы выражения состава растворов
- •Термодинамические аспекты процесса растворения. Идеальные растворы
- •Коллигативные свойства разбавленных растворов
- •Диффузия и осмос в растворах
- •Роль осмоса в биологических процессах
- •Давление насыщенного пара растворителя над раствором. Закон Рауля
- •Следствия из закона Рауля
- •1) Растворы кипят при более высокой температуре, чем чистый растворитель;
- •2) Растворы замерзают при более низкой температуре, чем чистый растворитель.
- •Применение методов криоскопии и эбуллиоскопии
- •Коллигативные свойства растворов электролитов. Изотонический коэффициент Вант-Гоффа
- •Электролитическая диссоциация Электролиты и неэлектролиты. Теория электролитической диссоциации
- •Общая характеристика электролитов
- •Слабые электролиты
- •Сильные электролиты
- •Диссоциация воды. Водородный показатель
- •Теория кислот и оснований. Буферные растворы Теория кислот и оснований
- •Буферные растворы Определение буферных систем и их классификация
- •Механизм действия буферных систем
- •Вычисление рН и рОн буферных систем. Уравнение Гендерсона-Гассельбаха
- •Буферная емкость
- •Буферные системы человеческого организма
- •Нарушения кислотно-оснóвного равновесия крови. Ацидоз. Алкалоз
- •Химическая кинетика и катализ Кинетика химических реакций
- •Понятие о скорости химической реакции. Закон действующих масс
- •Кинетическая классификация химических реакций. Понятие о молекулярности и порядке химической реакции Порядок и молекулярность простых химических реакций
- •Понятие о сложных химических реакциях
- •Классификация сложных реакций
- •Измерение скорости химической реакции
- •Влияние температуры на скорость химической реакции
- •Катализ Общие положения и закономерности катализа
- •Механизм гомогенного и гетерогенного катализа
- •Особенности каталитической активности ферментов
- •2. Другим важным отличием ферментов от катализаторов небелковой природы является их высокая специфичность, т.Е. Избирательность действия.
- •Физическая химия дисперсных систем Определение дисперсных систем
- •Классификация дисперсных систем и их общая характеристика
- •Классификация дисперсных систем по агрегатному состоянию вещества дисперсной фазы и дисперсионной среды
- •Классификация по взаимодействию между частицами дисперсной фазы или степени структурированности системы
- •Классификация по характеру взаимодействия дисперсной фазы с дисперсионной средой
- •Методы получения дисперсных систем
- •Диспергирование жидкостей
- •Диспергирование газов
- •Конденсационные методы
- •Методы физической конденсации
- •Методы химической конденсации
- •Очистка золей
- •Компенсационный диализ и вивидиализ
- •Молекулярно-кинетические свойства золей
- •Броуновское движение
- •Диффузия
- •Седиментация в золях
- •Осмотическое давление в золях
- •Оптические свойства золей
- •Рассеяние света (опалесценция)
- •Оптические методы исследования коллоидных систем Ультрамикроскоп
- •Механизм образования и строение коллоидной частицы – мицеллы
- •1. Получение золя берлинской лазури:
- •2. Получение с помощью гидролиза FeCl3 золя гидроксида железа (III).
- •3. Получениезоля As2s3:
- •Электрокинетические свойства золей
- •Устойчивость гидрофобных коллоидных систем. Коагуляция золей Виды устойчивости золей
- •Теория коагуляции Дерягина-Ландау-Фервея-Овербека
- •Влияние электролитов на устойчивость золей. Порог коагуляции. Правило Шульца-Гарди
- •Чередование зон коагуляции
- •Коагуляции золей смесями электролитов
- •Скорость коагуляции
- •Коллоидная защита
- •Роль процессов коагуляции в промышленности, медицине, биологии
- •Растворы высокомолекулярных соединений
- •1) Своеобразное тепловое движение частиц растворенного вещества, схожее с броуновским движением мицелл в золях;
- •Общая характеристика высокомолекулярных соединений
- •Классификация полимеров
- •Набухание и растворение вмс
- •Термодинамические аспекты процесса набухания
- •Давление набухания
- •Свойства растворов высокомолекулярных соединений
- •Осмотическое давление растворов вмс
- •Онкотическое давление крови
- •Вязкость растворов полимеров
- •Свободная и связанная вода в растворах
- •Полиэлектролиты
- •Факторы, влияющие на устойчивость растворов полимеров. Высаливание
- •Электрохимия растворы электролитов как проводники второго рода. Электропроводность растворов электролитов
- •Эквивалентная электропроводность растворов
- •Практическое применение электропроводности
- •Равновесные электродные процессы
- •Металлический электрод
- •Измерение электродных потенциалов
- •Окислительно-восстановительные электроды
- •1. Переход окисленной формы в восстановленную и наоборот заключается только в обмене между ними электронами:
- •Диффузионный и мембранный потенциалы
- •Химические источники электрического тока. Гальванические элементы
- •Потенциометрия
- •Содержание
Полиэлектролиты
Многие природные и синтетические полимеры содержат в составе элементарных звеньев своих макромолекул различные ионогенные функциональные группы, способные диссоциировать в водных растворах. Такие вещества называются высокомолекулярными электролитами, или полиэлектролитами.При их диссоциации образуются небольшие подвижные ионы и многозарядный полимерный макроион. По характеру диссоциации ионогенных групп полиэлектролиты можно разбить на следующие 3 вида.
1. Полиэлектролиты, содержащие в своем составе только кислотные группы, диссоциирующие с отщеплением иона Н+, например –COOH, –SO3H, –SH.Из природных полимеров к таким полиэлектролитам относятся агар, окисленный крахмал, пектин. В состав макромолекул агара входят сульфогруппы, а элементарные звенья окисленного крахмала и пектина содержат карбоксильные группы. В некоторых полимерах ион водорода в этих группах может быть замещен на катион металла.
2. Полиэлектролиты, макромолекулы которых содержат только основные группы, например, аминогруппу –NH2.Среди биополимеров таких соединений нет. Данные полиэлектролиты получают синтетическим путем. К ним относятся многие анионообменные смолы (аниониты), имеющие большое практическое значение.
3. Полиэлектролиты, в макромолекулах которых чередуются кислотные и основные группы.Такие полиэлектролиты можно назвать полимерными амфотерными электролитами, или полиамфолитами.К ним относятся самый сложный и самый важный для живых организмов класс полимеров – белки.
Наличие в макромолекулах белков двух свободных ионогенных групп: основной –NH2и кислотной –COOH– придает им амфотерные свойства. В водных растворах белок может диссоциировать и как кислота, и как основание:
Pt–COOH ↔ Pt–COO– + H+
Pt–NH2 + HOH ↔ Pt–NH3+ + OH–
В кислой среде, содержащей избыток ионов Н+, ионизация СООН-групп будет подавлена и макромолекула белка приобретет положительный заряд за счет ионизации аминогрупп.
В щелочной среде, наоборот, будет подавляться процесс протонирования NH2-групп, зато практически полностью продиссоциируют СООН-группы. Белок будет вести себя как кислота и его молекулы приобретут отрицательный заряд.
Очевидно, должна существовать такая концентрация ионов Н+ в растворе, при которой число ионизированных кислотных групп в молекуле белка будет равно числу ионизированных основных групп. Суммарный же электрический заряд такой макромолекулы станет равным нулю. Данное состояние белка в водном растворе называется изоэлектрическим состоянием, а значение рН раствора, при котором молекула белка находится в изоэлектрическом состоянии, его изоэлектрической точкой (I).
Большинство природных белков содержит в пептидной цепи значительные количества остатков дикарбоновых аминокислот (аспарагиновой, глутаминовой). Такие белки называются кислотными. Изоэлектрическая точка кислотных белков лежит в области рН < 7. Для ее достижения в раствор белка нужно ввести некоторое количество сильной кислоты, чтобы подавить диссоциацию части карбоксильных групп.
Нейтральныебелки содержат в своих макромолекулах примерно равное количество кислотных и основных групп. Они переходят в изоэлектрическое состояние непосредственно в ходе своего растворения и не требуют для этого добавления сильной кислоты либо щелочи. Для нихI≈ 7.
В молекулах оснóвныхбелковNH2-групп содержится больше, чем кислотных. Для перевода их в изоэлектрическое состояние в раствор нужно добавить какое-то количество щелочи, чтобы депротонировать избыточные оснóвные группы. Соответственно электрическая точка основных белков лежит в области рН >7.
От реакции среды и характера диссоциации белковой молекулы зависит ее форма в растворе. При диссоциации ионогенных групп только по кислотному или только по основному типу в изогнутой спиралью пептидной цепи появятся одноименные заряды, распределенные по всей ее длине. За счет возникающих электростатических сил расталкивания соседние витки спирали будут стремится удалиться друг от друга. В результате этого макромолекула будет растягиваться.
В изоэлектрическом состоянии вдоль пептидной цепи чередуются заряды противоположного знака, способствующие сжатию молекулы или даже скручиванию ее в глобулу (рис. 79б).
Рис. 79. Форма макромолекулы белка в кислой среде (а), в изоэлектрической точке (б) и в щелочной среде (в)
Таким образом, в изоэлектрическом состоянии молекулы белка в растворе занимают наименьший объем. С увеличением или уменьшением рН молекулы распрямляются.
Объем макромолекул белков влияет на вязкость их растворов. В изоэлектрическом состоянии она должна быть минимальной (рис. 80). На этом свойстве растворов белков основан один из способов определения их изоэлектрической точки. Ее опытным путем можно определить еще и электрофоретическим методом. Аналогично изменению вязкости в зависимости от рН раствора протекает и процесс набухания белков. В изоэлектрической точке степень набухания белка минимальна.
Рис. 80. Зависимость вязкости раствора белка от рН среды: А – изоэлектрическая точка белка