Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

ekologiya_konspekt_lektsij

.pdf
Скачиваний:
35
Добавлен:
18.02.2016
Размер:
1.79 Mб
Скачать

вия на организмы и в ответных реакциях живых существ можно выявить ряд общих закономерностей.

Закон толерантности (закон оптимума или закон В. Шелфорда) – каждый фактор имеет определенные пределы положительного влияния на организмы. Как недостаточное, так и избыточное действие фактора отрицательно сказывается на жизнедеятельности особей (много «хорошо» – тоже «не хорошо»).

Факторы среды имеют количественное выражение. По отношению к каждому фактору можно выделить зону оптимума (зону нормальной жизнедеятельности), зону пессимума (зону угнетения) и пределы выносливости организма. Оптимум – такое количество экологического фактора, при котором интенсивность жизнедеятельности организмов максимальна.

В зоне пессимума жизнедеятельность организмов угнетена. За пределами выносливости существование организма невозможно. Различают нижний и верхний предел выносливости.

Способность живых организмов переносить количественные колебания действия экологического фактора в той или иной степе-

ни называется экологической валентностью (толерантностью, устойчивостью, пла-

стичностью).

Значения экологического фактора между верхним и нижним пределами выносливости называется зоной толерантности. Виды с широкой зоной толерантности называются эврибионтными, с узкой – стенобионтными. Организмы, переносящие значительные колебания температуры, называются эвритермными, а приспособленные к узкому интервалу температур – стенотермными. Таким же образом по отношению к давлению различают эври- и стенобатные организмы, по отношению к степени засоления среды – эври- и стеногалинные, по отношению к питанию эври- и стенотрофы (применительно к животным используют термины эври- и стенофаги) и т.д.

Экологические валентности отдельных индивидуумов не совпадают. Поэтому экологическая валентность вида шире экологической валентности каждой отдельной особи.

Экологические валентности вида к разным экологическим факторам могут существенно отличаться. Набор экологических валентностей по отношению к разным факторам среды составляет экологический спектр вида.

Экологический фактор, количественное значение которого выходит за пределы вынос-

ливости вида, называется лимитирующим (ограничивающим) фактором.

2.Неоднозначность действия фактора на разные функции – каждый фактор неоди-

наково влияет на разные функции организма. Оптимум для одних процессов может являться пессимумом для других. Так, для многих рыб температура воды, оптимальная для созревания половых продуктов, неблагоприятна для икрометания.

3.Разнообразие индивидуальных реакций на факторы сред – степень выносливо-

сти, критические точки, оптимальная и пессимальные зоны отдельных индивидуумов одного вида не совпадают. Эта изменчивость определяется как наследственными качествами особей, так и половыми, возрастными и физиологическими различиями. Например, у бабочки мельничной огневки – одного из вредителей муки и зерновых продуктов – критическая минимальная температура для гусениц -7 °С, для взрослых форм -22 °С, а для яиц -27 °С. Мороз в -10 °С губит гусениц, но не опасен для имаго и яиц этого вредителя. Следовательно, экологическая валентность вида всегда шире экологической валентности каждой отдельной особи.

4.Относительная независимость приспособления организмов к разным факторам

степень выносливости к какому-нибудь фактору не означает соответствующей экологиче-

41

ской валентности вида по отношению к остальным факторам. Например, виды, переносящие широкие изменения температуры, совсем не обязательно должны также быть приспособленными к широким колебаниям влажности или солевого режима. Эвритермные виды могут быть стеногалинными, стенобатными или наоборот.

5.Несовпадение экологических спектров отдельных видов – каждый вид специфи-

чен по своим экологическим возможностям. Даже у близких по способам адаптации к среде видов существуют различия в отношениях к каким либо-либо отдельным факторам.

6.Взаимодействие факторов – оптимальная зона и пределы выносливости организмов по отношению к какому-либо фактору среды могут смещаться в зависимости от того, с какой силой и в каком сочетании действуют одновременно другие факторы. Например, жару легче переносить в сухом, а не во влажном воздухе. Угроза замерзания значительно выше при морозе с сильным ветром, чем в безветренную погоду.

7.Закон минимума (закон Ю. Либиха или правило ограничивающих факторов) –

возможности существования организмов в первую очередь ограничивают те факторы среды, которые наиболее удаляются от оптимума. Если хотя бы один из экологических факторов приближается или выходит за пределы критических величин, то, несмотря на оптимальное сочетание остальных условий, особям грозит гибель. Так, продвижение вида на север может лимитироваться (ограничивается) недостатком тепла, в аридные районы – недостатком влаги или слишком высокими температурами. Выявление ограничивающих факторов очень важно

впрактике сельского хозяйства.

8.Гипотеза незаменимости фундаментальных факторов (В. Р. Вильямсон) – пол-

ное отсутствие в среде полное отсутствие в среде фундаментальных экологических факторов (физиологически необходимых; например, света, воды, углекислого газа, питательных веществ) не может быть компенсировано (заменено) другими факторами. Так, по данным «Книги рекордов Гиннеса» без воздуха человек может прожить до 10 мин., без воды – 10–15 суток, без пищи – до 100 дней.

В природе экологические факторы действуют совместно, то есть комплексно. Комплекс факторов, под действием которых осуществляются все основные жизненные процессы организмов, включая нормальное развитие и размножение, называются условиями жизни. Условия, в которых размножения не происходит, называются условиями существования.

4.5. Характеристика основных экологических факторов Свет. При прохождении солнечной радиации через атмосферу около 19% поглощается

облаками, водяными парами и т.д., 34% отражается обратно в космос, 47% достигает земной поверхности, из них 24% – прямая радиация и 23% – отраженные лучи. Растения связывают

входе фотосинтеза в среднем около 1 % энергии.

Вспектре солнечного света выделяют области, различные по своему биологическому действию. Ультрафиолетовые лучи в небольших дозах необходимы живым организмам (бактерицидное действие, стимуляция роста и развития клеток, синтез витамина и т.д.), в больших дозах губительны из-за способности вызывать мутации. Значительная часть ультрафиолетовых лучей отражается озоновым слоем. Видимые лучи – основной источник жизни на Земле, дающий энергию для фотосинтеза. Инфракрасные лучи – основной источник тепловой энергии. Для фотосинтеза наибольшее значение имеют красно-оранжевые и фиолето- во-голубые лучи.

Для растений солнечный свет необходим, прежде всего, как источник энергии для фотосинтеза. По отношению к условиям освещенности растения делят на следующие экологические группы. Гелиофиты (светолюбивые) – растения, обитающие в условиях хорошего освещения. Они имеют мелкие листья, сильно ветвящиеся побеги, значительное количество пигментов в листьях и др. Сциофиты (тенелюбивые) – растения, плохо переносящие прямые солнечные лучи. Для них характерны крупные, тонкие листья, расположенные горизонталь-

но, с меньшим количеством устьиц. Факультативные гелиофиты (теневыносливые) – рас-

тения, способные обитать как в условиях хорошего освещения, так и в условиях затенения.

42

Имеют переходные черты.

Для животных свет – это условие ориентации. Животные бывают с дневным, ночным и сумеречным образом жизни.

По отношению к продолжительности дня организмы (в основном растения) делят на короткодневные (обитатели низких широт; растения тропического происхождения переходят к цветению, когда продолжительность дня становится менее 12 ч. – георгины, хризантемы, просо, кукуруза и др.) и длиннодневные (обитатели умеренных и высоких широт; для цветения нуждаются в длине дня 12 ч и выше – лен, рожь, овес, лук, морковь и др.). Реакция организмов на продолжительность дня называется фотопериодизмом. Это очень важное приспособление, регулирующее сезонные явления у организмов. Изменение длины дня тесно связано с годовым ходом температуры, но в отличие от последней не подвержено случайным колебаниям. Фотопериодизм обусловливает такие сезонные явления, как листопад, перелеты птиц и т. п.

Если день сокращается, виды начинают готовиться к зиме, если удлиняется – к активному росту и размножению. В этом случае для жизни организмов важен не сам фактор изменения длины дня и ночи, а его сигнальное значение, свидетельствующее о предстоящих глубоких изменениях в природе. Как известно, длина дня сильно зависит от географической широты. В северном полушарии на юге летний день значительно короче, чем на севере. Поэтому южные и северные виды по-разному реагируют на одну и ту же величину изменения дня: южные приступают к размножению при более коротком дне, чем северные.

Изучением закономерностей сезонного развития природы занимается особое направление экологии – фенология (наука о явлениях).

Согласно биоклиматическому закону Хопкинса (выведенному им применительно к условиям Северной Америки) сроки наступления различных сезонных явлений (фенодат) различается в среднем на 4 дня на каждый градус широты, на каждые 5° долготы и на 120 м высоты над уровнем моря, т.е. чем севернее, восточнее и выше местность, тем позже наступление весны и раньше – осени. Кроме того, фенологические даты зависят от местных условия (рельефа, экспозиции, удаленности от моря и т.п.). На территории Европы сроки наступления сезонных событий изменяются на каждый градус широты не на 4, а на 3 дня.

Температура. От температуры окружающей среды зависит температура организмов, а, следовательно, скорость всех химических реакций, составляющих обмен веществ. Повышение температуры увеличивает количество молекул, обладающих энергией активации. По правилу Вант-Гоффа, для большинства химических реакций при повышении температуры на каждые 10 °С скорость химической реакции возрастает в 2–4 раза. В основном живые организмы способны жить при температуре от 0 до +50 °С, что обусловлено свойствами цитоплазмы клеток. Верхним температурным пределом жизни является +120…+140 °С (близкие к нему значения температуры выдерживают споры, бактерии), нижним -190…-273)° С (переносят споры, семена, сперматозоиды).

По отношению к температуре организмы делят на криофилов (обитающих в условиях низких температур) и термофилов (обитающих в условиях высоких температур).

Организмы могут использовать два источника тепловой энергии: внешний (тепловая энергия Солнца или внутреннее тепло Земли) и внутренний (тепло, выделяемое при обмене веществ).

В зависимости от того, какой источник преобладает в тепловом балансе, живые орга-

низмы делят на пойкилотермных и гомойотермных. Пойкилотермные организмы орга-

низмы с непостоянной внутренней температурой тела, меняющейся в зависимости от температуры внешней среды. К ним относятся микроорганизмы, растения, беспозвоночные и низшие позвоночные животные. Температура их тела обычно на 1–2° С выше температуры окружающей среды или равна ей. Гомойотермные организмы организмы, способные поддерживать внутреннюю температуру тела на относительно постоянном уровне независимо от температуры окружающей среды. Это птицы и млекопитающие. Если речь идет только о животных, то их еще называют холоднокровными и теплокровными соответственно. Среди го-

43

мойотермных организмов выделяют группу гетеротермных организмов – организмов, у которых периоды сохранения постоянно высокой температуры тела сменяются периодами ее понижения при впадении в спячку в неблагоприятный период года (суслики, сурки, ежи, летучие мыши и др.).

У живых организмов различают три механизма терморегуляции. Химическая терморегуляция осуществляется путем изменения величины теплопродукции за счет изменения интенсивности обмена веществ. Физическая терморегуляция связана с изменением величины теплоотдачи. Этологическая (или поведенческая) терморегуляция заключается в избегании условий с неблагоприятными температурами.

Немаловажное значение для поддержания температурного баланса имеет отношение поверхности тела к его объему, т. к. в конечном счете масштабы продуцирования тепла зависят от массы животного, а теплообмен идет через его покровы.

Связь размеров и пропорций тела животных с климатическими условиями их обитания была подмечена еще в XIX в. Согласно правилу Бергмана (1848), если два близких вида теплокровных животных отличаются размерами, то более крупный обитает в более холодном, а более мелкий – в теплом климате.

Д. Аллен в 1877 г. подметил, что у многих млекопитающих и птиц северного полушария относительные размеры конечностей и различных выступающих частей тела (хвостов, ушей, клювов) увеличиваются к югу – правило Аллена. Выступающие части имеют большую относительную поверхность, которая выгодна в условиях жаркого климата. У ряда млекопитающих, например, особое значение для поддержания теплового баланса имеют уши, снабженные, как правило, большим количеством кровеносных сосудов. Огромные уши африканского слона, пустынной лисички-фенека, американского зайца превратились в специализированные органы терморегуляции.

Вода. Вода обеспечивает протекание в организме обмена веществ и нормальное функционирование организма в целом.

Одни организмы живут в воде, другие приспособились к постоянному недостатку влаги. Среднее содержание воды в клетках большинства живых организмов составляет около 70%. Вода в клетке присутствует в двух формах: свободной (95% всей воды клетки) и связанной (4–5% связаны с белками).

Наиболее важные функции и свойства воды следующие:

1.Вода как растворитель является лучшим из известных растворителей, в ней растворяется больше веществ, чем в любой другой жидкости. Многие химические реакции в клетке являются ионными, поэтому протекают только в водной среде.

2.Вода как реагент участвует во многих химических реакциях: полимеризации, гидролиза, в процессе фотосинтеза.

3.Вода как термостабилизатор и терморегулятор. Эта функция обусловлена такими свойствами воды, как высокая теплоемкость – смягчает влияние на организм значительных перепадов температуры в окружающей среде; высокая теплопроводность – позволяет организму поддерживать одинаковую температуру во всем его объеме; высокая теплота испарения – используется для охлаждения организма при потоотделении у млекопитающих и транспирации у растений.

4.Транспортная функция воды осуществляется при передвижении по организму вместе

сводой растворенных в ней веществ к различным его частям и выведение ненужных продуктов из организма.

5.Структурная функция состоит в том, что цитоплазма клеток содержит от 60 до 95% воды, и именно она придает клеткам их нормальную форму. У растений вода поддерживает тургор (упругость эндоплазматической мембраны), у некоторых животных служит гидростатическим скелетом (медузы).

По отношению к воде среди живых организмов выделяют следующие экологические группы: гигрофилы (влаголюбивые), ксерофилы (сухолюбивые) и мезофилы (промежуточная группа).

44

В частности среди растений различают гигрофитов, мезофитов и ксерофитов. Гигрофиты растения влажных местообитаний, не переносящие водного дефицита.

К ним, в частности, относятся водные растения – гидрофиты и гидатофиты. Гидатофиты водные растения, целиком или большей своей частью погруженные в воду (например, рдест, кувшинка). Гидрофиты – водные растения, прикрепленные к грунту и погруженные в воду только нижними частями (например, тростник).

Ксерофиты растения сухих местообитаний, способные переносить перегрев и обезвоживание. К ним относятся суккуленты и склерофиты. Суккуленты ксерофитные растения с сочными, мясистыми листьями (например, алоэ) или стеблями (например, кактусовые), в которых развита водозапасающая ткань. Склерофиты ксерофитные растения с жесткими побегами, благодаря чему при водном дефиците у них не наблюдается внешней картины завядания (например, ковыли, саксаул).

Мезофиты растения умеренно увлажненных местообитаний; промежуточная группа между гидрофитами и ксерофитами.

По типу местообитания и образу жизни водные организмы объединяются в следующие экологические группы. Планктон организмы, в основном пассивно перемещающиеся за счет течения. Различают фитопланктон (одноклеточные водоросли) и зоопланктон (одноклеточные животные, рачки, медузы и др.). Нектон активно передвигающиеся в воде животные (рыбы, амфибии, головоногие моллюски, черепахи, ластоногие, китообразные и др.). Бентос организмы, живущие на дне и в грунте. Его делят на фитобентос (прикрепленные водоросли и высшие растения) и зообентос (ракообразные, моллюски, морские звезды и др.). Кроме того, в ряде случаев выделяют перифитон и нейстон. Перифитон организмы, прикрепленные к листьям и стеблям водных растений или другим выступам над дном водоема. Нейстон организмы, обитающие у поверхности воды (личинки комаров, водомерки, ряска и др.).

Рельеф. Рельефом (формами рельефа) называют совокупность неровностей земной поверхности разного масштаба. Различают выпуклые (положительные) формы рельефа и вогнутые (отрицательные) формы. Рельеф сформировался в результате взаимодействия внутренних (эндогенных) и внешних (экзогенных) геологических процессов.

По размерам рельеф делят на макрорельеф, мезорельеф и микрорельеф. Макрорельеф – формы рельефа с разностью высот от десятков до тысяч метров (горы, равнины, возвышенности, речные долины и др.). Мезорельеф – формы рельефа с разностью высот в пределах 10–20 м (холмы, лощины, долины, террасы, склоны разной крутизны, овраги, балки и др.). Микрорельеф – формы рельефа с разностью высот от нескольких сантиметров до 1 м (бугорки, западины, борозды, кочки, небольшие промоины и др.).

Рельеф оказывает косвенное воздействие на живые организмы, перераспределяя солнечную радиацию и осадки в зависимости от экспозиции и крутизны склонов. Так в северном полушарии на южных склонах произрастают более светолюбивые и теплолюбивые растения, чем на северных, в понижениях обитают более требовательные к влаге растения и т.д.

Эдафические (почвенно-грунтовые) экологические факторы. Важнейшими эколо-

гическими факторами, характеризующими почву как среду обитания, являются кислотность, содержание питательных элементов, содержание органических веществ, структура, плотность, засоленность, гранулометрический состав и др.

По отношению к кислотности почвы растения делят на следующие экологические группы: ацидофилы (растут на почвах с рН<6,7); нейтрофилы (рН=6,7–7,0); базифилы

(рН>7,0); индифферентные виды (могут обитать на почвах с разным значением рН).

По отношению к содержанию питательных элементов в почве среди растений различают олиготрофов (растения, довольствующиеся малым количеством зольных элементов), эвтрофов (нуждаются в большом количестве зольных элементов) и мезотрофов (требуют умеренного количества зольных элементов).

По другим признакам среди растений выделяют такие группы как галофиты (растения засоленных почв), нитрофилы (растения, предпочитающие почвы, богатые азотом), лито-

45

фиты, или петрофиты (растения каменистых почв), псаммофиты (растения песков).

По степени связи с почвой как средой обитания животных объединяют в три экологические группы. Геобионты животные, постоянно обитающие в почве, весь цикл развития которых протекает в почвенной среде. Геофилы животные, часть цикла развития которых (чаще одна из фаз) обязательно проходит в почве. Геоксены животные, иногда посещающие почву для временного укрытия или убежища.

4.6. Биологические ритмы

Биологические ритмы представляют собой периодически повторяющиеся изменения интенсивности и характера биологических процессов и явлений. Они в той или иной форме присущи всем живым организмам и отмечаются на всех уровнях организации: от внутриклеточных процессов до биосферных. Биологические ритмы наследственно закреплены и являются следствием естественного отбора и адаптации организмов. Ритмы бывают внутрисуточные, суточные, сезонные, годичные, многолетние и многовековые.

Примерами биологических ритмов являются: ритмичность в делении клеток, синтезе ДНК и РНК, секреции гормонов, суточное движение листьев и лепестков в сторону Солнца, осенние листопады, сезонное одревеснение зимующих побегов, сезонные миграции птиц и млекопитающих и т.д.

Биологические ритмы делят на экзогенные и эндогенные. Экзогенные (внешние) ритмы возникают как реакция на периодические изменения среды (смену дня и ночи, сезонов, солнечной активности). Эндогенные (внутренние) ритмы генерируются самим организмом. Ритмичность имеют процессы синтеза ДНК, РНК и белков, работа ферментов, деление клеток, биение сердца, дыхание и т.д. Внешние воздействия могут сдвигать фазы этих ритмов и менять их амплитуду.

Среди эндогенных различают физиологические и экологические ритмы. Физиологические ритмы (биение сердца, дыхание, работа желез внутренней секреции и др.) поддерживают непрерывную жизнедеятельность организмов. Экологические ритмы (суточные, годичные, приливные, лунные и др.) возникли как приспособление живых существ к периодическим изменениям среды. Физиологические ритмы существенно варьируют в зависимости от состояния организма, экологические – более стабильны и соответствуют внешним ритмам.

Экологические ритмы способны подстраиваться к изменениям цикличности внешних условий, но лишь в определенных пределах. Такая подстройка возможна благодаря тому, что в течение каждого периода имеются определенные интервалы времени (время потенциальной готовности), когда организм готов к восприятию сигнала извне, например яркого света или темноты. Если сигнал несколько запаздывает или приходит преждевременно, соответственно сдвигается фаза ритма. В экспериментальных условиях при постоянном освещении и температуре этот же механизм обеспечивает регулярный сдвиг фазы в течение каждого периода. Поэтому период ритма в этих условиях обычно не соответствует природному циклу и постепенно расходится по фазе с местным временем.

Эндогенный компонент ритма дает организму возможность ориентироваться во времени и заранее готовиться к предстоящим изменениям среды. Это так называемые биологические часы организма. Многим живым организмам свойственны циркадные и цирканные ритмы. Циркадные (околосуточные) ритмы – повторяющиеся изменения интенсивности и характера биологических процессов и явлений с периодом от 20 до 28 ч. Цирканные (окологодичные) ритмы – повторяющиеся изменения интенсивности и характера биологических процессов и явлений с периодом от 10 до 13 месяцев. Циркадные и цирканные ритмы регистрируются в экспериментальных условиях при постоянной температуре, освещенности и т.д.

Ритмический характер имеют физическое и психологическое состояния человека. Нарушение установившихся ритмов жизнедеятельности может снижать работоспособность, оказывать неблагоприятное воздействие на здоровье человека. Изучение биоритмов имеет большое значение при организации труда и отдыха человека, особенно в экстремальных условиях (в полярных условиях, в космосе, при быстром перемещении в другие часовые пояса

46

и т.д.).

Несовпадение во времени между природными и антропогенными явлениями часто приводит к разрушению природных систем. Например, при проведении слишком частых рубок леса.

4.7. Жизненные формы организмов

Современная систематика живых организмов строится на основе степени родства организмов. В основу экологических классификаций могут быть положены самые разнообразные критерии: способы питания, передвижения, отношения к температуре, влажности, свободному кислороду и т.п. Разнообразие адаптации к среде создает необходимость множественных классификаций.

Среди приспособлений живых организмов к среде особую роль играют морфологические адаптации. Изменения в наибольшей степени затрагивают органы, находящиеся в непосредственном соприкосновении с внешней средой. В результате наблюдается конвергенция – (сближение) морфологических (внешних) признаков у разных видов, в то время как анатомические и другие признаки изменяются в меньшей степени, отражая родство и происхождение видов (медведка и крот, волк и сумчатый волк, европейский крот и сумчатый крот). Морфологический (морфо-физиологический) тип приспособления животного или растения к определенным условиям обитания и определенному образу жизни называют жизненной формой организма. Существует большое количество классификаций жизненных форм растений и животных, основанных на разных признаках. В качестве примера приведем две классификации жизненных форм растений и одну для животных.

Классификации жизненных форм растений. Среди специалистов-ботаников попу-

лярна классификация К. Раункиера (1905) по положению почек или верхушек побегов в течение неблагоприятного времени года по отношению к поверхности почвы и снегового покрова. Этот признак имеет глубокий биологический смысл: защита меристем, предназначенных для продолжения роста, обеспечивает непрерывное существование особи в условиях резко изменяющейся среды.

I. Фанерофиты растения, почки возобновления которых находятся высоко над поверхностью земли (выше 30 см). К.ним относятся деревья и кустарники.

II. Хамефиты – растения, почки возобновления которых расположены у поверхности почвы или невысоко (не выше 20-30 см), зимой могут оказаться под снегом. Это полукустарники и мелкие кустарнички.

III. Гемикриптофиты растения, почки возобновления которых находятся на уровне поверхности почвы или в самом поверхностном ее слое, часто покрытом подстилкой. Сюда относят большинство многолетних трав.

IV. Криптофиты растения, почки возобновления которых скрыты в почве (геофиты) или под водой (гелофиты и гидрофиты). К этим растениям относят луковичные, клубневые и корневищные растения.

V. Терофиты однолетние растения, не имеющие почек возобновления; размножаются только семенами.

Наиболее разработанной классификацией жизненных форм растений на основе эколо- го-морфологических признаков является система И. Г. Серебрякова, им выделено 4 отдела жизненных форм:

1.Отдел А. Древесные растения. Включает 3 типа: деревья, кустарники и кустарнички.

2.Отдел Б. Полудревесные растения. Включает 2 типа: полукустарники и полукустар-

нички.

3.Отдел В. Наземные травы. Включает 2 типа: поликарпические и монокарпические

травы.

4.Отдел В. Водные травы. Включает 2 типа: земноводные, плавающие и подводные

травы.

Классификации жизненных форм животных. Д.Н. Кашкаров (1945) классифициро-

47

вал жизненные формы животных по характеру передвижения в разных средах.

I.Плавающие формы. 1. Чисто водные: а) нектон, б) планктон, в) бентос. 2. Полуводные: а) ныряющие, б) неныряющие, в) лишь добывающие из воды пищу.

II.Роющие формы. 1. Абсолютные землерои (всю жизнь проводящие под землей).

2.Относительные землерои (выходящие на поверхность).

III.Наземные формы. 1. Не делающие нор: а) бегающие, б) прыгающие, в) ползающие.

2.Делающие норы: а) бегающие, б) прыгающие, в) ползающие. 3. Животные скал.

IV. Древесные лазающие формы, а) не сходящие с деревьев, б) лишь лазающие по деревьям.

V.Воздушные формы, а) добывающие пищу в воздухе, б) высматривающие пищу с

воздуха.

Глава 5. ЭКОЛОГИЯ ПОПУЛЯЦИЙ (ДЕМЭКОЛОГИЯ) 5.1. Понятие о популяции

Совокупность особей, обладающих наследственным сходством морфологических, физиологических и биохимических особенностей, способных к скрещиванию с образованием плодовитого потомства, приспособленных к определенным условиям жизни и занимающих в природе определенную область (ареал), называется видом. Виды часто занимают большой ареал, в пределах которого особи распределены неравномерно, группами – популяциями. Целостность вида поддерживается связями между популяциями.

Популяция совокупность особей одного вида, способных к самовоспроизводству, которая длительно существует в определенной части ареала относительно обособленно от других совокупностей того же вида.

Контакты между особями одной популяции чаще, чем между особями разных популяций. Например, уровень панмиксии (свободного скрещивания) внутри популяции выше, чем между особями разных популяций. Популяция является структурной единицей вида и единицей эволюции.

Ареал. Пространство, на котором популяция или вид в целом встречается в течение всей своей жизнедеятельности, называется ареалом – областью распространения. Ареал может быть сплошным или разорванным (дизъюнктивным), если между его частями возникают различные преграды (водные, орографические и др.), пространства, не заселенные представителями данного вида. Выделяют различные центры ареалов: геометрический центр; центр возникновения вида в пределах ареала; центр обилия – часть ареала, на которой сосредоточено наибольшее количество особей.

Степень обособленности соседних популяций вида очень различна. В некоторых случаях они резко разделены территорией, непригодной для обитания, и четко локализованы в пространстве, например популяции окуня и линя в изолированных друг от друга озерах или популяции пластинчатозубой крысы, индийской камышевки и других видов в оазисах и долинах рек среди пустынь. Противоположный вариант – сплошное заселение видом обширных территорий. Такой характер распространения свойствен, например, малым сусликам в сухих степях и полупустынях. В этих ландшафтах плотность их населения повсеместно высока. Отдельные непригодные для жизни участки легко преодолеваются при расселении молодняка, а в благоприятные годы на них возникают временные поселения. Здесь вычленить границы между популяциями можно лишь условно, между областями с разной плотностью населения. Другой пример сплошного распространения вида – семиточечная божья коровка. Эти жуки встречаются в самых различных биотопах и разных природных зонах. Вид характеризуется, кроме того, предзимними миграциями. Границы между популяциями в таких случаях почти не выражены. Однако, поскольку совместно обитающие особи контактируют между собой чаще, чем с представителями других частей ареала, население удаленных друг от друга мест можно считать разными популяциями.

Между популяциями осуществляется обмен отдельными особями, который может быть

48

либо достаточно регулярным, либо эпизодическим. При сезонных кочевках ворон, например, часть молодых птиц ежегодно остается на местах зимовок, образуя пары с представителями оседлого населения. Связь между населением отдельных видов рыб в озерах осуществляется значительно реже, например в годы с особо сильными паводками, когда обособленные водоемы соединяются в единую водную систему.

Связи между популяциями поддерживают вид как единое целое. Слишком длительная и полная изоляция популяций приводит обычно к образованию новых видов.

Различия между отдельными популяциями выражены в разной степени. Они могут затрагивать не только их групповые характеристики, но и качественные особенности физиологии, морфологии и поведения отдельных особей. Эти различия создаются в основном под влиянием естественного отбора, приспосабливающего каждую популяцию к конкретным условиям ее существования.

Зайцы-беляки из разных частей ареала различаются характером окраски, размерами, строением пищеварительной системы. Например, длина слепой кишки у зайцев полуострова Ямал в 2 раза больше, чем у представителей из лесостепного Урала. Это связано с характером питания, разной долей грубых кормов в составе рациона. Средняя величина выводка в центрально-якутской популяции составляет около 7 зайчат на самку, которая дает приплод один раз в год. В карельской части ареала зайчихи приносят зайчат дважды за сезон, но средняя величина выводка около 4 экземпляров. В Белоруссии самки беляков могут давать до четырех приплодов в год. Заячье население разных географических территорий испытывает неодинаковое давление со стороны хищников и паразитов. Популяции различаются между собой тем сильнее, чем более несходны условия их обитания и чем слабее между ними обмен особями.

В зависимости от величины ареала и характера распространения различают космополитов, убиквистов, эндемиков. Космополиты виды растений и животных, представители которых встречаются на большей части обитаемых областей Земли (например, комнатная муха, серая крыса). Убиквисты виды растений и животных с широкой экологической валентностью, способны существовать в разнообразных условиях среды, имеют обширные ареалы (например, тростник обыкновенный, волк). Эндемики виды растений и животных, которые имеют небольшие ограниченные ареалы (часто встречаются на островах океанического происхождения, в горных районах и изолированных водоемах).

Для животных также различают трофический и репродуктивный ареалы, между которыми существует связь в виде путей пролета для птиц или путей миграции для некоторых млекопитающих и рыб.

Классификация популяций. Популяции различаются по размерам и степени генетической самостоятельности, длительности существования, способу размножения особей и т.д.

По размерам занимаемой популяцией территории и степени связи между особями различают элементарные (локальные), экологические и географические популяции. Элементарная (локальная) популяция элементарная группировка особей, характеризующаяся практически с полной панмиксией. Экологическая популяция – совокупность пространственно смежных элементарных популяций. Географическая популяция совокупность групп пространственно смежных экологических популяций.

По способности к самовоспроизведению и самостоятельной эволюции популяции бывают перманентные (постоянные) и темпоральные (временные). Перманентные (постоянные) – популяции, относительно устойчивые в пространстве и во времени, способные к неограниченно длительному самовоспроизведению, являются элементарными единицами эволюции. Темпоральные (временные) – популяции, неустойчивые в пространстве и во времени, неспособные к длительному самовоспроизведению, с течением времени либо преобразуются в перманентные, либо исчезают.

По способу размножения популяции делят на панмиктические, клональные и клональ- но-панмиктические. Панмиктические популяции состоят из особей, размножающихся половым путем, для которых характерно перекрестное оплодотворение. Клональные популя-

49

ции состоят из особей, для которых характерно только бесполое размножение. Клональнопанмиктические популяции образованы особями с чередованием полового и бесполого размножения.

Популяции, будучи групповыми объединениями, обладают рядом специфических свойств, которые не присущи каждой отдельной особи: численность, плотность, рождаемость, смертность, скорость роста и др. Кроме того популяции свойственна определенная организация: половая, возрастная, генетическая, пространственно-этологическая и другие структуры.

Количественные показатели (характеристики) популяции можно разделить на статические и динамические. Статические показатели характеризуют состояние популяции на данный момент времени. Основные из них: численность, плотность, а также показатели структуры. Динамические показатели популяции отражают процессы, протекающие в популяции за определенный промежуток времени. Основные из них: рождаемость, смертность, скорость роста популяции.

5.2. Статические показатели популяции Численность число особей в популяции. Численность популяции может значительно

изменяться во времени. Она зависит от биотического потенциала вида и внешних условий. Плотность число особей или биомасса популяции, приходящаяся на единицу площа-

ди или объема.

Популяция характеризуется определенной структурной организацией – соотношением групп особей по полу, возрасту, размеру, генотипу, распределением особей по территории и т.д. В связи с этим выделяют различные структуры популяции: половую, возрастную, размерную, генетическую, пространственно-этологическую и др. Структура популяции формируется, с одной стороны, на основе общих биологических свойств вида, с другой стороны, под влиянием факторов среды, то есть имеет приспособительный характер.

Половая структура (половой состав) соотношение особей мужского и женского пола в популяции. Половая структура свойственна только популяциям раздельнополых организмов. Теоретически соотношение полов должно быть одинаковым: 50% от общей численности должны составлять мужские особи, а 50% – женские. Фактическое соотношение полов зависит от действия различных факторов среды, генетических и физиологических особенностей вида.

Различают первичное, вторичное и третичное соотношения полов. Первичное соотношение – соотношение, наблюдаемое при формировании половых клеток (гамет). Обычно оно равно 1:1. Такое соотношение обусловлено генетическим механизмом определения пола.

Вторичное соотношение – соотношение, наблюдаемое при рождении. Третичное соотноше-

ние – соотношение взрослых половозрелых особей.

Например, у человека во вторичном соотношении несколько преобладают мальчики, в третичном – женщины: на 100 девочек рождается 106 мальчиков, к 16–18 годам из-за повышенной мужской смертности это соотношение выравнивается и к 50 годам составляет 85 мужчин на 100 женщин, а к 80 годам – 50 мужчин на 100 женщин.

У рыжих лесных муравьев из яиц, отложенных при температуре ниже +20 °С, развиваются самцы, при более высокой – почти исключительно самки. Механизм этого явления заключается в том, что мускулатура семяприемника, где хранится после копуляции сперма, активизируется лишь при высоких температурах, обеспечивая оплодотворение откладываемых яиц. Из неоплодотворенных же яиц у перепончатокрылых развиваются лишь самцы.

Особенно наглядно влияние условий среды на половую структуру популяций у видов с чередованием половых и партеногенетических поколений. Дафнии при оптимальной температуре размножаются партеногенетически, но при повышенной или пониженной температуре в популяциях появляются самцы. На появление обоеполого поколения у тлей могут влиять изменения длины светового дня, температуры, увеличение плотности населения и другие

50

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]