
- •7.15. Определение качества цементирования скважин по данным гис .
- •7.16. Определение мест негерметичности колонн и заколонных перетоков пластовых флюидов по данным гис.
- •7.17. Выделение интервалов притока и приемистости пласта и определение работающих мощностей пласта
- •7.18. Методы расходометрии и потокометрии скважин.
- •7.19. Определение коэффициента вытеснения нефти водой.
- •7.20. Определение коэффициента проницаемости по керну; по гис.
- •8.1. Методы получения геологопромысловой информации о залежах продуктивных пластов.
- •8.2. Методы построения карт поверхностей коллекторов, их использование в нефтепромысловой практике.
- •8.4. Геологическая неоднородность продуктивных пластов, методы её изучения. Количественная оценка макронеоднородности. Учет в нефтепромысловой практике.
- •8.5. Виды пустотности, их соотношение и роль в коллекторах различных литологических типов. Нефтегазоводонасыщенность.
- •8.6. Фильтрационные свойства пород-коллекторов. Определение кондиционных пределов продуктивных пластов.
- •8.7. Принципы и методика детальной корреляции, учет её результатов в практике разработки нефтяных и газовых залежей.
- •Виды кореляции
- •8.8. Характеристика пластовых флюидов, учет свойств при разработке.
- •8.9. Начальное пластовое давление в залежи, факторы, влияющие на формирование пластового давления. Аномальное пластовое давление, его роль и учет в нефтегазопромысловой практике.
- •8.10. Природные режимы нефтяных и газовых залежей. Факторы, определяющие формирование режимов.
- •Режимы газовых залежей
- •8.11. Понятие о продуктивности и производительности скважин. Коэффициенты продуктивности и приемистости, методы их определения. Гидропроводность, проводимость, подвижность, количественная оценка.
- •8.12. Нефтегазоконденсатоотдача пластов, влияние и учет геологических факторов на полноту использования недр.
- •Физико-химические методы воздействия
- •Бурение многозабойных скважин
- •8.13. Обоснование исходных геологических факторов, учитываемых при проектировании разработки нефтяных и газовых месторождений.
- •8.14. Стадии и этапы проектирования разработки. Требования, предъявляемые к различным документам по проектированию разработки.
- •Этапы проектирования разработки
- •Стадии разработки
- •8.15. Геолого-промысловое обоснование применения новых методов воздействия на нефтяные и нефтегазоконденсатные пласты.
- •8.16. Понятие и разработка многопластовых месторождений. Принципы выделения эксплуатационных объектов. Этапы разработки, основные и возвратные объекты.
- •8.17. Геолого-промысловые факторы, предопределяющие применение различных видов заводнения.
- •8.18. Геологические факторы, влияющие на характер размещения добывающих и нагнетательных скважин по площади эксплуатационных объектов (сетка скважин, размещение рядами).
- •8.19. Содержание геологической части документов по проектированию разработки и газовых залежей.
- •8.20. Геолого-промысловые методы контроля за процессом разработки нефтяных и газовых залежей.
- •8.22. Геолого-промысловое обоснование мероприятий по регулированию процесса разработки и повышению конечного коэффициента нефтеотдачи.
- •8.23. Геолого-промысловые методы планирования добычи нефти и газа.
- •8.24. Понятия о статических и динамических моделях нефтяных и газовых залежей.
- •8.25. Классификация запасов углеводородного сырья.
- •8.26. Понятие о вертикальных, наклонных, пологих, горизонтальных скважинах. Заканчивание скважин.
7.18. Методы расходометрии и потокометрии скважин.
(Из интернета)
Установление истинной величины работающей толщины эксплуатационных объектов имеет громаднейшее значение для установления отборов нефти, проектирования систем поддержания пластового давления, т.е. прогнозирования методов регулирования процесса разработки в пределах каждого объекта разработки. Это весьма важно и для вычисления соответствующих параметров (например, послойной неоднородности) при расчёте годовых и накопленных отборов нефти.
Кроме того, комплексная обработка дебитограмм и расходограмм позволяет определить величину коэффициента охвата при закачке воды в пласт с целью поддержания пластового давления. В то же время следует помнить, что величина работающей мощности с ростом депрессии будет увеличиваться. Для решения этой задачи привлекаются два типа дебитомеров: термоэлектрические - СТД-2; гидродинамические РГТ-1, РГД-2М. При интерпретации этих исследований по СТД-2 чётко выделяются работающие интервалы пласта толщиной до 0,4 м, но они не позволяют оценить характер распределения дебита по отдающим пропласткам. Небольшие по толщине участки пласта с высокими дебитами нефти могут быть вообще не зафиксированы.
Приборы типа РГТ-1, наоборот, позволяют получить количественную характеристику профиля притока пластов, но с менее чёткой их фиксацией на диаграмме. Кроме того, эти приборы помогают выявить небольшие по толщине участки пласта с высокими дебитами нефти.
Например, на одном из месторождений Западной Сибири были перфорированы пласты АВ2, АВ3, АВ4-5 Как показали исследования дебитомерами, из перфорированного интервала пластов, достигающего 40 м, работает только 10,8 м (верхняя часть пласта АВ4-5). На другом месторождении при совместной перфорации пластов БС1+БС2-3+БС10 нижний пласт вообще не работает. Аналогичная картина наблюдается на месторождении, где совместно эксплуатируются пласты БС5+БС6+БС8, однако работает лишь пласт БС6. На другом месторождении работающая толщина пластов колеблется от 10 до 53 %, составляя в среднем всего 29 %.
Определение профиля притока в нагнетательных скважинах необходимо для установления истинных интервалов перфорации, оценки послойной неоднородности, прогнозирования выработки запасов из залежи, продвижения фронта закачиваемой воды и проектирования всех систем регулирования разработки эксплуатационных объектов. Исследования скважин глубинными расходомерами позволяют определить и сопоставить величины охвата пластов закачкой при нагнетании воды с аналогичными величинами при изучении профилей оттока по ближайшим эксплуатационным скважинам, а также следить за изменением динамики закачки воды во времени.
Например, при исследовании одной из нагнетательных скважин (пласты АВ2-3) расход воды составил 1450 м3/сут; интервал перфорации 1804-1841 м, 1849-1854 м. С помощью магнитного локатора муфт фактический интервал перфорации установлен в интервалах 1804,4-1841,8 м; 1849,6-1854,6 м. По данным РГТ-1 уход воды зафиксирован лишь в интервалах 1836-1837 м; 1837,8-1838,6 м; 1840,2-1841 м. Коэффициент охвата пласта заводнением составляет всего 0,049.
Установить истинную величину работающей мощности помогут новые приборы - дебитомеры РГД-4, РН-26, термодебитомеры Т-4, СТД-2, комплексные приборы "ПОТОК-5".
Следует заметить, что проводимые исследования профилей отдачи и притока на нефтяных месторождениях нашей страны позволяют сделать вывод о возможности изучения неоднородности нефтяных залежей, ориентировочной оценки рабочей толщины пластов, а также решения отдельных вопросов контроля и регулирования разработки.