- •Содержание
- •1.Накопители энергии
- •1.1.Механические накопители энергии
- •1.1.1.Гравитационные механические накопители
- •1.1.1.1.Гравитационные твердотельные механические накопители
- •1.1.1.2.Гравитационные жидкостные механические накопители
- •1.2.1.Кинетические механические накопители
- •1.2.1.1.Колебательные (резонансные) накопители энергии
- •1.1.2.2.Гироскопические накопители энергии
- •1.1.2.3.Гирорезонансные накопители энергии
- •1.1.3.Механические накопители с использованием сил упругости
- •1.1.3.1.Пружинные механические накопители
- •1.1.3.2.Газовые механические накопители
- •1.2.Тепловые накопители энергии
- •1.2.1.Накопление за счёт теплоёмкости
- •1.2.2.Накопление энергии при смене фазового состояния вещества
- •1.2.2.1.Плавление и кристаллизация
- •1.2.2.3.Испарение и конденсация
- •1.2.3.Накопление энергии с помощью термохимических реакций
- •1.3.Электрические накопители энергии
- •1.3.1.Конденсаторы
- •1.3.2.Ионисторы
- •1.3.3.Электрохимические аккумуляторы
- •1.4.Химические накопители энергии
- •1.4.1.Накопление энергии наработкой топлива
- •1.4.2.Безтопливное химическое накопление энергии
- •1.5.Другие типы накопителей энергии
- •2.Переработка нефти
- •2.1.Каталитический крекинг
- •2.2.Каталитический риформинг.
- •2.3.Гидрогенизация.
- •3.Ультразвуковые (акустические) расходомеры
- •3.1.Излучатели и приемники акустических колебаний
- •3.2.Разновидности и принцип действия ультразвуковых расходомеров с колебаниями, направленными по потоку и против него.
- •3.3.Устройство преобразователей ультразвуковых расходомеров
- •3.4.Фазовые ультразвуковые расходомеры
- •3.5.Частотные ультразвуковые расходомеры
- •3.6.Времяимпульсные ультразвуковые расходомеры
- •3.7.Ультразвуковые расходомеры с колебаниями, перпендикулярными к потоку
- •4.Сотовая связь
- •4.1.Классификация систем мобильной связи.
- •4.2.Деление обслуживаемой территории на соты.
- •4.3.Повторное использование частот.
- •Заключение
- •Conclusion
- •Список использованной литературы
1.3.Электрические накопители энергии
Электричество — наиболее удобная и универсальная форма энергии в современном мире. Поэтому именно накопители электрической энергии являются развиваются наиболее быстро. К сожалению, в большинстве случаев удельная ёмкость недорогих устройств невелика, а устройства с высокой удельной ёмкостью слишком дороги для хранения больших запасов энергии при массовом применении.
1.3.1.Конденсаторы
Самые массовые «электрические» накопители энергии — это обычные радиотехнические конденсаторы. Они обладают огромной скоростью накопления и отдачи энергии — как правило, от нескольких тысяч до многих миллиардов полных циклов в секунду, и способны так работать в широком диапазоне температур многие годы, а то и десятилетия. Объединяя несколько конденсаторов параллельно, легко можно увеличить их суммарную ёмкость до нужной величины.
Конденсаторы можно разделить на два больших класса — «сухие» неполярные и электролитические, имеющие существенно большую удельную ёмкость, но требующие соблюдения полярности при подключении и более чувствительные к внешним условиям, прежде всего к температуре.
Однако у конденсаторов есть два основных недостатка. Во-первых, это весьма малая удельная плотность запасаемой энергии и потому небольшая (относительно других видов накопителей) ёмкость. Во-вторых, это малое время хранения, которое обычно исчисляется минутами и секундами и редко превышает несколько часов, а в некоторых случаях составляет лишь малые доли секунды. В результате область применения конденсаторов ограничивается различными электронными схемами и кратковременным накоплением, достаточным для выпрямления, коррекции и фильтрации тока в силовой электротехнике — на большее их пока не хватает.
1.3.2.Ионисторы
Ионисторы, которые иногда называют «суперконденсаторами», можно рассматривать как своего рода промежуточное звено между электролитическими конденсаторами и электрохимическими аккумуляторами. От первых они унаследовали практически неограниченное количество циклов заряда-разряда, а от вторых — относительно невысокие токи зарядки и разрядки (цикл полной зарядки-разрядки может длиться секунду, а то и намного дольше). Ёмкость их также находится в диапазоне между наиболее ёмкими конденсаторами и небольшими аккумуляторами — обычно запас энергии составляет от единиц до нескольких сотен джоулей.
Дополнительно следует отметить достаточно высокую чувствительность ионисторов к температуре и ограниченное время хранения заряда — от нескольких суток до нескольких недель максимум.
1.3.3.Электрохимические аккумуляторы
Электрохимические аккумуляторы были изобретены ещё на заре развития электротехники, и сейчас их можно встретить повсюду — от мобильного телефона до самолётов и кораблей.
Как правило, при необходимости запасать достаточно большую энергию — от нескольких сотен килоджоулей и более — используются свинцовые аккумуляторы (пример — любой автомобиль). Однако они имеют немалые габариты и, главное, вес. Если же требуется малый вес и мобильность устройства, то используются более современные типы аккумуляторов — никель-кадмиевые, металл-гидридные, литий-ионные, полимер-ионные и др. Они имеют гораздо более высокую удельную ёмкость, однако и удельная стоимость хранения энергии у них заметно выше, поэтому их применение обычно ограничивается относительно небольшими и экономичными устройствами — мобильными телефонами, различными камерами и ноутбуками.
По режиму использования электрохимические аккумуляторы (прежде всего мощные) также подразделяются на два больших класса — так называемые тяговые и стартовые. Тяговые аккумуляторы ориентированы на относительно равномерный разряд в течение достаточно длительного времени, когда параметры разряда сравнимы с током и временем зарядки, а глубина разряда может быть достаточно большой — прежде всего это аккумуляторы для электротранспорта, электроинструмента и источников бесперебойного питания (UPS). Стартовые, наоборот, способны выдать очень большой ток в течении короткого времени, но при штатной эксплуатации не должны испытывать глубокий разряд — таковы обычные автомобильные аккумуляторы, выдающие в течении нескольких секунд на стартёр ток в сотни ампер при зарядном токе порядка 5..10 А и длительности зарядки в несколько часов. Обычно стартовый аккумулятор достаточно успешно может работать в качестве тягового (главное — контролировать степень разряда и не доводить его до такой глубины, которая допустима для тяговых аккумуляторов), а вот при обратном применении слишком большой ток нагрузки может очень быстро вывести тяговый аккумулятор из строя. С другой стороны, менее жёсткие условия разряда позволяют несколько облегчить конструкцию тяговых аккумуляторов по сравнению с их стартовыми собратьями, а допустимость большей глубины разряда позволяет приблизить реально используемую ёмкость к номинальной.
К недостаткам электрохимических аккумуляторов можно отнести весьма ограниченное число циклов заряда-разряда (в большинстве случаев — 1..2 тысячи, а при несоблюдении рекомендаций производителей — гораздо меньше), чувствительность к температуре, длительное время заряда, иногда в десятки раз превышающее время разряда, и необходимость соблюдения методики использования (недопущение глубокого разряда для свинцовых аккумуляторов и, наоборот, соблюдение полного цикла заряда-разряда для металл-гидридных и многих других типов аккумуляторов). Время хранения заряда также обычно довольно ограничено — от недели до года-другого (я имею в виду, что оставшийся в аккумуляторе заряд будет намного меньше исходного, а вовсе не то, что по истечении указанного срока он будет совсем «пуст», хотя возможно и такое). У старых аккумуляторов уменьшается не только ёмкость, но и время хранения, причём и то, и другое может сократиться во много раз.
