
- •О.С.Агеева, т.Н.Строганова, к.С.Чемезова
- •Предисловие
- •1.Элементы квантовой механики
- •1.1. Гипотеза де Бройля. Корпускулярно-волновой дуализм микрочастиц
- •Опыты Девиссона и Джермера (1927г.)
- •Опыты Тартаковского и Томсона (1928 г.)
- •1.2. Соотношение неопределенностей
- •1.3. Волновая функция
- •1.4. Уравнение Шредингера
- •1.5. Задача квантовой механики о движении свободной частицы
- •1.6. Задача квантовой механики о частице в одномерной прямоугольной потенциальной яме
- •1.7. Понятие о туннельном эффекте.
- •1.8. Атом водорода в квантовой механике. Квантовые числа
- •Состояния электрона в атоме водорода
- •1.9. 1S– состояние электрона в атоме водорода
- •1.10. Спин электрона. Принцип Паули
- •1.11. Спектр атома водорода
- •1.12. Поглощение света, спонтанное и вынужденное излучения
- •1.13. Лазеры
- •1.13.1. Инверсия населенностей
- •1.13.2. Способы создания инверсии населенностей
- •1.13.3. Положительная обратная связь. Резонатор
- •1.13.4. Принципиальная схема лазера.
- •1.14. Уравнение Дирака. Спин.
- •2. Зонная теория твердых тел.
- •2.1. Понятие о квантовых статистиках. Фазовое пространство
- •2.2. Энергетические зоны кристаллов. Металлы. Полупроводники. Диэлектрики
- •Удельное сопротивление твердых тел
- •2.3. Метод эффективной массы
- •3. Металлы
- •3.1. Модель свободных электронов
- •При переходе из вакуума в металл
- •3.2. Распределение электронов проводимости в металле по энергиям. Уровень и энергия Ферми. Вырождение электронного газа в металлах
- •Энергия Ферми и температура вырождения
- •3.3. Понятие о квантовой теории электропроводности металлов
- •3.4. Явление сверхпроводимости. Свойства сверхпроводников. Применение сверхпроводимости
- •3.5. Понятие об эффектах Джозефсона
- •4. Полупроводники
- •4.1. Основные сведения о полупроводниках. Классификация полупроводников
- •4.2. Собственные полупроводники
- •4.3.Примесные полупроводники
- •4.3.1.Электронный полупроводник (полупроводник n-типа)
- •4.3.2. Дырочный полупроводник (полупроводник р-типа)
- •4.3.3.Компенсированный полупроводник. Частично компенсированный полупроводник
- •4.3.4.Элементарная теория примесных состояний. Водородоподобная модель примесного центра
- •4.4. Температурная зависимость удельной проводимости примесных полупроводников
- •4.4.1.Температурная зависимость концентрации носителей заряда
- •4.4.2.Температурная зависимость подвижности носителей заряда
- •4.4.3. Температурная зависимость удельной проводимости полупроводникаn-типа
- •4.4.5. Термисторы и болометры
- •4.5. Рекомбинация неравновесных носителей заряда в полупроводниках
- •4.6. Диффузия носителей заряда.
- •4.6.1. Диффузионная длина
- •4.6.2. Соотношение Эйнштейна между подвижностью и коэффициентом диффузии носителей заряда
- •4.7. Эффект Холла в полупроводниках
- •4.7.1. Возникновение поперечного электрического поля
- •4.7.2. Применение эффекта Холла для исследования полупроводниковых материалов
- •4.7.3. Преобразователи Холла
- •4.8. Магниторезистивный эффект
- •5. Электронно-дырочный переход
- •5.1.Образование электронно-дырочного перехода
- •5.1.1. Электронно-дырочный переход в условиях равновесия (при отсутствии внешнего напряжения)
- •5.1.2.Прямое включение
- •5.1.3.Обратное включение
- •5.2.КласСификация полупроводниковых диодов
- •5.3. Вольт-амперная характеристика электроннно-дырочного перехода. Выпрямительные, детекторные и преобразовательные диоды
- •5.3.1.Уравнение вольт-амперной характеристики
- •Классификация полупроводниковых диодов
- •5.3.2.Принцип действия и назначение выпрямительных, детекторных и преобразовательных диодов
- •5.4. Барьерная емкость. Варикапы
- •5.5.Пробой электронно-дырочного перехода
- •5.6. Туннельный эффект в вырожденном электронно-дырочном переходе. Туннельные и обращенные диоды
- •6.Внутренний фотоэффект в полупроводниках.
- •6.1.Фоторезистивный эффект. Фоторезисторы
- •6.1.1.Воздействие излучения на полупроводник
- •5.1.2.Устройство и характеристики фоторезисторов
- •6.2.Фотоэффект в электронно-дырочном переходе. Полупроводниковые фотодиоды и фотоэлементы.
- •6.2.1.Воздействие света наp-n-переход
- •7.Люминесценция твердых тел
- •7.1.Виды люминесценции
- •7.2.Электролюминесценция кристаллофосфоров
- •7.2.1. Механизм свечения кристаллофосфоров
- •7.2.2. Основные характеристики электролюминесценции кристаллофосфоров
- •7.2.3.Электролюминесцентный источник света
- •7.3.Инжекционная электролюминесценция. Устройство и характеристики светодиодных структур
- •7.3.1.Возникновение излучения в диодной структуре
- •7.3.2.Конструкция светодиода
- •7.3.3.Основные характеристики светодиодов
- •7.3.4.Некоторые применения светодиодов
- •7.4 Понятие об инжекционных лазерах
- •8. Транзисторы
- •8.1.Назначение и виды транзисторов
- •8.2.Биполярные транзисторы
- •8.2.1 Структура и режимы работы биполярного транзистора
- •8.2.2.Схемы включения биполярных транзисторов
- •8.2.3.Физические процессы в транзисторе
- •8.3.Полевые транзисторы
- •8.3.1.Разновидности полевых транзисторов
- •8.3.2.Полевые транзисторы с управляющим переходом
- •8.3.3. Полевые транзисторы с изолированным затвором. Структуры мдп-транзисторов
- •8.3.4.Принцип действия мдп-транзисторов с индуцированным каналом
- •8.3.5. Мдп-транзисторы со встроенным каналом
- •8.4. Сравнение полевых транзисторов с биполярными
- •Заключение
- •1.Элементы квантовой механики 4
- •2. Зонная теория твердых тел. 42
- •3. Металлы 50
- •4. Полупроводники 65
- •5. Электронно-дырочный переход 97
- •6.Внутренний фотоэффект в полупроводниках. 108
- •7.Люминесценция твердых тел 113
- •8. Транзисторы 123
7.3.Инжекционная электролюминесценция. Устройство и характеристики светодиодных структур
7.3.1.Возникновение излучения в диодной структуре
Рассмотрим второй вид электролюминесценции (эффект Лосева).
При прямом включении p-n-перехода навстречу друг другу идут диффузионные потоки электронов из n – области в p-область, а дырок — из p- в n-область. При встрече электронов и дырок происходит их рекомбинация, которая может быть безызлучательной (в большинстве приборов) или излучательной. В излучающих диодах созданы условия для излучательной рекомбинации. Длины излучаемых электромагнитных волн зависят от ширины запрещенной зоны полупроводника и расположения в ней рекомбинационных ловушек.
Если
излучение относится к инфракрасному
диапазону, то диоды называютизлучающими,
а если к видимому – светоизлучающими
или просто -светодиодами. Светодиоды
изготовляют из карбида кремния (желтого
свечения), фосфида галлия (красного и
зеленого свечения), нитрида галлия
(голубого свечения), а также из некоторых
тройных соединений. Они используются
как индикаторы и миниатюрные источники
света. Излучение светодиодов некогерентно.
Рассмотрим светодиод красного свечения на основе фосфида галлия, легированного цинком и кислородом (GaP: Zn, O). Атомы кислорода и цинка, замещая соседние атомы галлия и фосфора в решетке, образуют электрически нейтральный комплекс Zn-O. С точки зрения зонной теории введение примесей приводит к возникновению дополнительных уровней энергии в запрещенной зоне (рис.7.7)
Комплекс Zn-O ведет себя как электронная ловушка, уровень которой Eлотстоит от дна зоны проводимости примерно на 0,3 эВ. Кроме того, атомы цинка создают мелкие акцепторные уровни вблизи потолка валентной зоны (Ea). На рис. 7.7 показана одна из возможных схем рекомбинации. Электрон, захватывается ловушкой (переход 1).Акцепторные центры (уровеньEа) захватывают дырки из валентной зоны (переход 2). Рекомбинация захваченного ловушкой электрона и дырки, захваченной акцептором (переход 3), дает красное излучение.
7.3.2.Конструкция светодиода
Данный светодиод представляет собой кристалл фосфида галлия p- типа. Для создания n- области в него диффузией введены примеси. Свет излучается вблизи образовавшегося p-n - перехода при пропускании через него прямого тока (рис.7.8). Часто для уменьшения потерь на отражение при выходе света из кристалла поверхность покрывают пластиковой линзой, имеющей сферическую форму (рис.7.8б).
7.3.3.Основные характеристики светодиодов
Спектральная характеристика излучающего диода имеет вид кривой с максимумом, она приведена на рис.7.9.
Зависимость силы света для светодиодов или мощности излучения для ИК диодов от тока также является важной характеристикой излучающего прибора (рис. 7.10). При малых токах она, как правило, нелинейна, но при возрастании тока выходит на линейный или близкий к линейному участок, который используется как рабочий.
Параметры полупроводниковых излучателей как элементов электрической схемы определяются вольт-амперной характеристикой. Вольт-амперная характеристика светодиода отличается от зависимости, описываемой формулой (4.3.1), так как в данном типе приборов при прямом смещении перехода присутствует составляющая тока, обусловленная рекомбинацией носителей.
На рис.7.11 представлены вольт-амперные характеристики излучающих диодов, изготовленных из разных материалов