
- •Глава 1 Водные свойства горных пород и виды воды в породах
- •Глава 1
- •§ 1. Основные понятия и термины
- •§ 2. Виды воды в горных породах
- •Глава 2
- •§ 3. Круговорот воды в природе
- •§ 4. Происхождение подземных вод
- •§ 5. Классификация подземных вод
- •§ 6. Краткая характеристика подземных вод
- •§ 7. Физические свойства и химический состав подземных вод
- •Глава 3
- •§ 8. Вечная (многолетняя) мерзлота
- •§ 9. Трещинные воды
- •§ 10. Карстовые воды
- •Глава 4
- •§ 11. Основные законы движения подземных вод
- •§ 12. Движение подземных вод в естественных условиях
- •§ 13. Движение подземных вод к водосборным сооружениям
- •§ 14. Понятие
- •§ 15. Уравнения
- •Глава 5
- •§ 16. Объем и характер гидрогеологических работ на различных стадиях разведки месторождений
- •§ 17. Виды и содержание гидрогеологических работ
- •§ 18. Гидрогеологические исследования при разведке и эксплуатации месторождении
§ 2. Виды воды в горных породах
В порах и трещинах горных пород всегда содержится вода в парообразном, жидком или твердом состоянии. Существуют различные классификации видов воды в горных породах.
В гидрогеологии и инженерной геологии принята классификация, которая была предложена А. Ф. Лебедевым (1930 г.), а затем уточнена в соответствии с новейшими представлениями о природе воды, строении ее молекулы и характере физико-химического взаимодействия воды с минеральными частицами пород:
1. Вода в состоянии пара.
2. Физически связанная вода:
1) прочно связанная, или адсорбированная, вода;
2)рыхло или слабо связанная вода.
3. Свободная вода:
1) капиллярная;
2) гравитационная.
4. Вода в твердом состоянии.
5. Вода в кристаллической решетке минералов:
1) конституционная;
2) кристаллизационная;
3) цеолитная.
Вода в состоянии пара. Эта вода заполняет свободную часть пор в зоне аэрации. Под влиянием изменения температуры и давления парообразная влага может превращаться в капельножидкое состояние — конденсироваться или, наоборот, жидкая вода превращается в парообразное состояние. Тем самым парообразная влага в порах пород находится в постоянном динамическом равновесии с другими видами воды и с парами воды в атмосфере. Физически связанная вода. Такая вода присуща преимущественно глинистым породам; в скальных и раздельнозернистых породах она практического значения не имеет. Подразделяется на прочно связанную, или адсорбированную, и рыхло или слабо связанную воду. Образование физически связанной воды обусловливается наличием у мелкодисперсных глинистых минералов, входящих в состав глинистых пород, поверхностной энергии, природа которой электростатическая. Электростатическое поле, образующееся на поверхности мелкодисперсных минералов, как правило, имеет отрицательный заряд. При взаимодействии мелкодисперсной частицы с водой молекулы воды, являясь жесткими диполями, притягиваются к поверхности частицы положительными концами. Помимо молекул воды к поверхности минеральной частицы притягиваются и катионы из поровой воды. Поровая вода — жидкая фаза, заполняющая поры породы; представляет собой водный раствор различных солей.
Молекулы воды и катионы, непосредственно ориентированные поверхностью частицы, прочно связаны с ней; эту воду нельзя отделить от частицы даже силами в несколько тысяч атмосфер, и она перемещается в порах породы только в виде пара. Ее называют прочно связанной, или адсорбированной. Наибольшее количество прочно связанной воды называется максимальной гидроскопической влагоемкостью; в песчаных грунтах она не превышает 1-2%, а в глинистых достигает 20%.
Если бы не проявлялось молекулярное тепловое (броуновское) движение, то около грунтовой частицы образовался бы неподвижный, адсорбционный слой катионов и молекул воды. Но тепловой эффект обусловливает образование около частиц слоя подвижных катионов, которые в совокупности с катионами неподвижного слоя гасят заряд частицы. Подвижный слой катионов называется диффузным; катионы диффузного слоя называются обменными, или поглощенными. Обменные катионы способны обмениваться с катионами порового раствора; этот процесс называется ионным обменом. Ионный обмен, широко распространенный и существенно влияющий на физико-механические свойства глинистых пород, имеет большое практическое значение. Общее количество ионов диффузного слоя глинистой тонкодисперсной частицы, способных к обмену с катионами порового раствора в данных условиях, называют емкостью обмена, или поглощения, породы. Количественно емкость обмена выражают в миллиграмм-эквивалентах на 100 г сухой породы.
От состава обменных катионов в значительной степени зависят физико-механические свойства глинистых пород и тем заметнее, чем больше емкость поглощения. Глины, насыщенные натрием, очень сильно набухают в воде, имеют малое сцепление, при действии внешней нагрузки сильно сжимаются; в сухом состоянии обладают значительной связностью и прочностью.
Глины, диффузный слой которых состоит из ионов кальция, слабее набухают в воде, под нагрузкой они меньше сжимаются и имеют ряд других удовлетворительных механических свойств.
Искусственно меняя состав обменных катионов, можно изменять физико-механические свойства глинистых пород в желаемом для практических целей направлении, что широко используется в практике мелиорации грунтов.
Катионы диффузного слоя также притягивают к себе диполи воды и около них в свою очередь образуется гидратная оболочка. Вода диффузного слоя называется рыхло связанной. Энергия связи между частицей и катионами диффузного слоя, а тем самым и рыхло связанной водой интенсивно убывает по мере удаления от поверхности частицы. Рыхло связанная вода называется также пленочной; вместе с прочно связанной она, по А. Ф. Лебедеву, называется молекулярной водой. Максимальное количество молекулярной воды, удерживаемой данной породой в данных условиях, А. Ф. Лебедев назвал максимальной молекулярной влагоемкостью.
Эта влагоемкость примерно соответствует влажности нижнего предела пластичности.
Максимальное содержание связанной в глине воды, образующейся за счет различных видов взаимодействия диполей воды с поверхностью частиц, соответствует влажности верхнего предела пластичности и влажности набухания.
Характерными свойствами рыхло связанной воды являются: более медленное по сравнению со свободной водой передвижение (в основном она передвигается по породам от мест с большей толщиной пленок к местам с меньшей их толщиной); прямая зависимость скорости ее передвижения от температуры; пониженная способность растворять соли (растворенные в ней соли передвигаются независимо от передвижения самой воды); замерзание при температуре ниже нуля, причем температура замерзания понижается тем больше, чем более дисперсны частицы; гидростатического давления рыхло связанная вода не передает.
Наличие в глинистых породах рыхло связанной воды придает им ряд важных свойств: липкость, пластичность, набухание, усадку и др.; физико-механические свойства данных пород (сопротивление сжатию и сдвигу) изменяются в обратной зависимости от количества рыхло связанной воды.
Свободная вода. Капиллярная вода заполняет капиллярные пустоты в породах; она поднимается от уровня подземных вод вверх по капиллярным пустотам под действием силы поверхностного натяжения на границе раздела воды и воздуха, образуя выше уровня подземных вод зону капиллярного насыщения и отделяясь от зоны аэрации капиллярной каймой.
Гравитационная вода — подземная вода, движущаяся в порах и трещинах горных пород под действием силы тяжести. Гравитационная вода обладает всеми свойствами, присущими обычной воде: растворяющей способностью, передает гидростатическое давление, оказывает при движении механическое воздействие на породы. Гидростатическое давление воды, находящейся в порах пород, уменьшает вес скелета породы по закону Архимеда и оказывает взвешивающее давление на подошву сооружений, построенных на водопасыщенных породах. Механическое действие движущейся воды на породы проявляется в выносе мелких частиц из рыхлых несвязных пород на откосах выемок и котлованов — суффозии, что может вызвать неустойчивость откосов и последующую деформацию склонов. В зоне полного насыщения всех пустот в породе гравитационные воды образуют водоносные горизонты. Изучение гравитационных вод, их движения, физических свойств и химического состава является основной задачей гидрогеологических исследований.
Вода в твердом состоянии. При температуре пород ниже пуля гравитационная и часть связанной воды замерзает и содержится в породах в виде кристаллов льда или ледяных прослоев и жил. Кристаллы льда цементируют отдельные минеральные частицы, превращая рыхлые породы в твердые. Свойства пород, сцементированных льдом, резко отличны от свойств талых пород. Изучением свойств мерзлых пород занимается особая наука — мерзлотоведение.
Вода в кристаллической
решетке минералов. Конституционная
вода входит в состав кристаллической
решетки минералов в виде ионов Н+ и ОН-,
участвуя в их строении, например Са(ОН).
При разрушении кристаллической решетки
минералов выделяются водород и гидроксил,
которые связываются и образуют молекулы
воды. Выделение конституционной воды
при нагревании каждого минерала
происходит в определенном температурном
интервале (обычно выше 300° С) и сопровождается
поглощением тепла. Это позволяет
определять некоторые минералы при
помощи термического анализа, для чего
употребляются специальные приборы —
термографы.
Кристаллизационная
вода участвует в строении кристаллической
решетки некоторых минералов в виде
молекул воды в строго определенных
количествах (например, в гипсе СаSO2Н
О,
в мирабилитеNаSО
10Н
О).
Эта вода, как и конституционная, выделяется
из минералов при строго определенной
для каждого минерала температуре (ниже
300° С) и сопровождается поглощением
тепла, что и позволяет определять
исследуемый минерал при помощи
термического анализа. Выделение
кристаллизационной воды обусловливает
разрушение решетки минерала и ее
перестройку (например, гипс превращается
в ангидрит).
Цеолитная вода — часть кристаллизационной воды, которая может выделяться и вновь поглощаться без разрушения кристаллической решетки, входит в состав кристаллических решеток некоторых минералов — цеолитов, представляющих собой водные алюмосиликаты