
- •Структура погрешности.
- •Метод Гаусса
- •Формулы прямого хода
- •Обратный ход
- •Описание метода Гаусса для вырожденных систем.
- •Применения метода Гаусса.
- •Нахождение определителя матрицы.
- •Нахождение обратной матрицы
- •Нахождение ранга матрицы.
- •Определение совместности системы.
- •Вопрос 1. Почему при описанном выше построении очередной полученный отрезок также содержит корень исходного уравнения? Обоснуйте этот факт геометрически, а если сможете, то докажите его строго.
- •Суть и обоснование метода итераций.
- •Условие окончания вычислений в методе итераций.
- •Сравнение различных методов.
- •Постановка задачи интерполирования.
- •Линейная интерполяция.
- •Интерполяция многочленом.
- •Единственность интерполяционного многочлена n-й степени.
- •Построение вспомогательных многочленов Лагранжа.
- •Построение многочлена Лагранжа.
- •Оценка погрешности.
- •Постановка задачи и ее качественный анализ.
- •Нахождение наилучшей линейной приближающей функции.
- •Сведение поиска функций другого вида к поиску линейной функции.
- •Общая схема
- •Метод прямоугольников.
- •Метод трапеций.
- •Метод симпсона.
- •Метод двойного счета.
- •Постановка задачи
- •Метод Пикара.
- •Общая схема численных методов.
- •Методы Рунге-Кутта
- •2. Метод стрельбы.
- •Численные методы поиска экстремумов функций одной переменной
- •Метод равномерного поиска.
- •Метод поразрядного приближения
- •Метод деления отрезка пополам (или метод дихотомии).
- •Метод квадратичной интерполяции
- •Метод золотого сечения
- •Метод координатного спуска
- •Градиентный метод
- •Постановка задачи. Графический метод
- •Пример 1 (транспортная задача)
- •Пример 2 (расчет рациона)
- •Пример 3 (распределение ресурсов)
- •Задача линейного программирования в общем виде:
- •Графический метод решения задачи линейного программирования.
- •Двойственная задача
- •Симплекс - метод
- •Описание симплекс-метода.
- •Алгоритм симплекс-метода:
- •Пример.
Условие окончания вычислений в методе итераций.
Замечание 3. Процесс построения последовательности следует обрывать, когда станет верным неравенство |хк+1-хк|< *(1-q)/q. В этом случае хк+1 и дает приближение к решению с требуемой точностью.
Упражнение 1.12. Доказать, что в условиях теоремы из неравенства |хк+1-хк|< *(1-q)/q вытекает неравенство |хк+1-с|< .
Упражнение 1.13.Составить алгоритм и программу на одном из языков для решения уравнений методом итераций.
Сравнение различных методов.
Сравнение методов обычно производится по следующим критериям:
1.Универсальность.
2.Простота организации вычислений и контроля за точностью.
3.Скорость сходимости.
Если сравнить три приведенных выше метода, то следует отметить, что
1) Самым универсальным является метод половинного деления, поскольку он применим для любой непрерывной функции. Однако и в двух других методах ограничения не слишком жесткие и, обычно, на практике можно применять любой метод.
2) Все три метода примерно одинаковы и очень просты.
3) Скорость сходимости в методе половинного деления -геометрическая прогрессия со знаменателем 1/2 , в методе итерации -со знаменателем q, а метод Ньютона, как правило, дает сходимость со скоростью, превышающей скорость сходимости любой геометрической прогрессии. Во всех случаях скорость сходимости очень высока.
Тема лекции № 5. Интерполирование функций
При решении большинства вычислительных задач приходиться иметь дело с функциями, заданными таблично, а не аналитически. В этом случае дополнительные вопросы возникают даже тогда, когда надо определить значение функции в определенной точке. Как правило, эта задача носит вспомогательный характер, но сейчас мы ее рассмотрим как самостоятельную.
Постановка задачи интерполирования.
На отрезке (a, b) в n+1 точке (узлах интерполяции) a=X0 < X1 < X2 <...< Xn=b
заданы значения Yi функцииY=f(X). Требуется подобрать вспомогательную функцию (x) (интерполяционную функцию или интерполянту) простого вида, для которой:
(Xi)=Yi при i=0,1,2,3,...,n
(X)f(X) при всех остальных значениях X[a,b].
Основной целью процесса интерполирования является получение быстрого и экономичного алгоритма вычисления приближенного значения функции во всех точках отрезка [a,b].
Формулировка задачи не является строго математической, поскольку в нее входят, например, слова "функция простого вида", или (X)f(X). Главные вопросы здесь -как выбрать интерполянту и как оценить точность приближения функции f(X) на отрезке [a,b].
Ответ на вопрос о точности, без каких-либо дополнительных ограничений на функцию f(X), дать нельзя, поскольку легко привести примеры совершенно непохожих друг на друга непрерывных функций, которые задаются таблично одинаковым способом. Поэтому при оценке точности налагаются ограничения на гладкость функции, что мы и увидим позже.
Рассмотрение вопроса о виде интерполирующей функции (X) привело к созданию целой теории приближений, весьма сложной и большой по объему. Поэтому мы ограничимся рассмотрением лишь простейших случаев: линейной интерполяции и интерполяции многочленами.