
- •Лекция 1. Основные понятия и определения
- •1. Люди, принимающие решения
- •2. Люди и их роли в процессе принятия решений
- •3. Особая важность проблем индивидуального выбора
- •4. Альтернативы
- •5. Критерии
- •6. Оценки по критериям
- •7. Процесс принятия решений
- •8. Множество Эджворта-Парето
- •9. Типовые задачи принятия решений
- •10. Пример согласования интересов лпр и активных групп
- •11. Многодисциплинарный характер науки о принятии решений
- •Лекция 2. Аксиоматические теории рационального поведения
- •1. Рациональный выбор в экономике
- •2. Аксиомы рационального поведения
- •3. Задачи с вазами
- •4. Деревья решений
- •5. Парадокс Алле
- •6. Нерациональное поведение. Эвристики и смещения
- •7. Объяснения отклонений от рационального поведения
- •8. Должны ли экономисты принимать во внимание отклонения поведения людей от рационального?
- •9. Теория проспектов
- •10. Теория проспектов и парадокс Алле
- •11. Новые парадоксы
- •Волшебные страны Компьютерная игра в Университете Власти
- •Лекция 3. Многокритериальные решения при объективных моделях
- •1. Модели
- •2. Подход исследования операций
- •3. Появление многокритериальное
- •4. Первые многокритериальные решения: сколько строить ракет?
- •5. Разные типы проблем
- •6. Два пространства
- •7. Многокритериальный анализ экономической политики
- •8. Две трудности для лпр
- •9. Исследование решений на множестве э-п
- •10. Постановка многокритериальной задачи линейного программирования
- •11. Человекомашинные процедуры
- •12. Весовые коэффициенты важности критериев
- •13. Классификация чмп
- •14. Прямые человекомашинные процедуры
- •15. Процедуры оценки векторов
- •16. Процедуры поиска удовлетворительных значений критериев
- •Фаза расчетов
- •Фаза анализа
- •17. Пример применения метода stem : как управлять персоналом
- •Волшебные страны Обращение ректора Университета Власти к студентам
- •Лекция 4. Оценка многокритериальных альтернатив: многокритериальная теория полезности
- •1. Снова об этапах процесса принятия решений
- •2. Различные группы задач принятия решений
- •Задачи первой группы
- •Задачи второй группы
- •3. Пример
- •4. Многокритериальная теория полезности ( maut )
- •4.1. Основные этапы подхода maut
- •4.2. Аксиоматическое обоснование
- •4.3. Основные теоремы
- •4.4. Построение однокритериальных функций полезности
- •4.5. Проверка условий независимости
- •4.6. Определение весовых коэффициентов (коэффициентов важности) критериев
- •4.7. Определение полезности альтернатив
- •5. Метод smart – простой метод многокритериальной оценки
- •6. Первый эвристический метод
- •7. Веса критериев
- •8. Как люди назначают веса критериев
- •9. Практическое применение
- •Библиографический список
- •Волшебные страны Компьютерная генетика
- •Лекция 5. Оценка многокритериальных альтернатив: подход аналитической иерархии
- •1. Основные этапы подхода аналитической иерархии
- •2. Структуризация
- •3. Попарные сравнения
- •4. Вычисление коэффициентов важности
- •5. Определение наилучшей альтернативы
- •6. Проверка согласованности суждений лпр
- •7. Система поддержки принятия решений Expert Choice
- •8. Контрпримеры и противоречия
- •9. Мультипликативный метод аналитической иерархии
- •10. Пример практического применения подхода анр
- •Библиографический список
- •Лекция 6.Оценка многокритериальных альтернатив: методыelectre
- •1. Конструктивистский подход
- •2. Два основных этапа
- •3. Свойства бинарных отношений
- •4. Метод electre I
- •5. Метод electre II
- •6. Метод electre III
- •7. Пример
- •8. Пример практического применения метода electre III
- •9. Некоторые сопоставления
- •Модель человеческого мозга «Грандом», созданная в Монтландии
- •Лекция 7. Человеческая система переработки информации и ее связь с принятием решений
- •1. Этапы переработки информации, типы памяти
- •2. Модель памяти
- •3. Кратковременная память
- •3.1. Три этапа переработки информации в кратковременной памяти
- •3.2. Кодирование
- •3.3. Хранение
- •3.4. Магическое число
- •3.5. Денежный насос
- •3.6. Последовательная обработка информации
- •3.7. Извлечение
- •4. Дескриптивные исследования многокритериальных проблем
- •4.1. Прослеживание процесса принятия решений
- •4.2. Результаты дескриптивных исследований
- •5. Долговременная память
- •5.1. Кодирование
- •5.2. Хранение
- •5.3. Извлечение
- •6. Рабочая память
- •7. Психологические теории человеческого поведения при принятии решений
- •7.1. Теория поиска доминантной структуры
- •7.2. Теория конструирования стратегий
- •8. Исследование возможностей человека в задачах классификации многомерных объектов
- •8.1. Схема экспериментов
- •8.2. Параметры, используемые для оценки поведения испытуемых в задачах классификации
- •8.3. Описание экспериментов
- •8.4. Результаты экспериментов
- •8.5. Обсуждение результатов первой серии экспериментов
- •8.6. Анализ и обсуждение результатов второй серии экспериментов
- •8.7. Общее обсуждение
- •Библиографический список
- •История бюрократии в Монтландии
- •Лекция 8. Оценка многокритериальных альтернатив: вербальный анализ решений
- •1. Особый класс задач принятия решений: неструктурированные проблемы с качественными переменными
- •2. Качественная модель лица , принимающего решения
- •2.1. Черты человеческой системы переработки информации
- •2.2 Особенности поведения человека при принятии решений
- •3. Какими должны быть методы анализа неструктурированных проблем
- •4. Измерения
- •4.1. Качественные измерения
- •4.2. Сравнительные качественные оценки
- •5. Построение решающего правила
- •6. Проверка информации лпр на непротиворечивость
- •7. Обучающие процедуры
- •8. Получение объяснений
- •9. Основные характеристики методов вербального анализа решений
- •10. Метод запрос ( Замкнутые Процедуры у Опорных Ситуаций )
- •10.1. Постановка задачи
- •10. 2. Пример : как оценить проекты ?
- •10.3. Выявление предпочтений лпр
- •10.4. Сравнение альтернатив
- •10.5. Преимущества метода запрос
- •10.6. Практическое применение метода запрос
- •11. Сравнение трех сппр
- •Библиографический список
- •Контрольное задание
- •Компьютерные двойники
- •Лекция 9. Повторяющиеся решения. Построение баз экспертных знаний
- •1. Процесс мышления как манипулирование символами
- •2. Два типа знания
- •3. Время и условия становления эксперта
- •4. Трансформация системы переработки информации
- •5. Иерархические структуры хранения знаний
- •6. Черты поведения эксперта
- •7. Подсознательный характер экспертных знаний
- •8. Трудности получения экспертных знаний
- •9. Экспертные знания в задачах классификации с явными признаками
- •10. Формальная постановка задачи классификации
- •11. Основные идеи метода экспертной классификации
- •11.1. Структуризация проблем
- •11.2. Классификация состояний объекта исследования
- •11.3. Гипотеза о характерности
- •11.4. Проверка информации эксперта и гипотезы о характерности
- •11.5. Определение последовательности состояний для предъявления эксперту в процессе классификации
- •11.6. Трудоемкость построения баз знаний
- •11.7. Проверка качества баз знаний
- •12. Граничные элементы классификации
- •13. Решающие правила экспертов
- •14. Система диагностики заболеваний группы
- •Библиографический список
- •Лекция 10. Анализ риска
- •1. Типы риска
- •2. Особая сложность задач анализа риска
- •3. Направления исследований
- •4. Измерение риска
- •4.1. Инженерный подход
- •4.2. Модельный подход
- •4.3. Восприятие риска
- •4.4. Сопоставление разных способов измерения риска
- •5. Установление стандартов
- •6. Человекомашинное взаимодействие
- •7. Риск катастрофических событий как независимый критерий
- •8. Распределения "с тяжелыми хвостами"”
- •9. Аварии и их анализ
- •10. Управление риском
- •11. Практический пример: выбор месторасположения нового объекта с учетом факторов риска
- •11.1. Конкретная задача: альтернативы
- •11.2. Активные группы
- •11.3. Критерии
- •11.4. Особенности задачи выбора с точки зрения теории принятия решений
- •11.5. Анализ вариантов
- •11.6. Конструирование нового варианта
- •Библиографический список
- •Контрольное задание
- •Волшебные страны Компьютерная демократия Монтландии
- •Лекция 11. Коллективные решения
- •1. Парадокс Кондорсе
- •2. Правило большинства голосов
- •3. Метод Борда
- •4. Аксиомы Эрроу
- •5. Попытки пересмотра аксиом
- •6. Теорема невозможности и реальная жизнь
- •7. Принятие коллективных решений в малых группах
- •8. Организация и проведение конференций по принятию решений
- •9. Метод организации работы гпр
- •9.1. Предварительные этапы
- •9.2. Анализ собранной информации
- •9.3. Проведение конференции по принятию решений
- •9.4. Практический пример
- •Библиографический список
- •Волшебные страны Военный переворот в Свапландии ( Статья в оппозиционной газете «Вечерний наблюдатель» , выходящей в столице Монтландии - Олоне).
- •К событиям в Свапландии ( Статья в правительственной газете «Олон - пост» , выходящей в столице Монтландии - Олоне .)
- •Лекция 12. Многокритериальная задача о назначениях
- •1. Определение и особенности
- •2. Постановка многокритериальной задачи о назначениях
- •2.1. Содержательная постановка задачи
- •2.2. Критерий оптимальности решения мзн
- •2.3. Формальная постановка задачи
- •3. Пример
- •4. Различные типы задач о назначениях
- •5. Основные алгоритмы решения многокритериальной задачи о назначениях
- •5.1. Различные индексы соответствия
- •5.2. Поиск решения многокритериальной задачи о назначениях
- •6. Этап анализа данных и проверки существования идеального решения
- •7. Формирование области допустимых решений
- •8. Выявление предпочтений лпр
- •8.1. Статистические оценки сложности задач выявления предпочтений лпр
- •8.2. Основная процедура выявления предпочтений лпр
- •8.3. Выявление предпочтений лпр ; вспомогательная процедура
- •9. Поиск окончательного решения многокритериальной задачи о назначениях
- •9.1. Поиск решения мзн типа а
- •9.2. Поиск решения мзн типа в
- •9.3. Поиск решения мзн типа с
- •9.4. Поиск решения мзн типа d
- •10. Практическое применение
- •Библиографический список
- •Контрольное задание
- •Волшебные страны Стратегия правления в Свапландии (Статья в Правительственной газете «Олон-пост», выходящей в столице Монтландии - Олоне.)
- •Прыжок в никуда
- •Лекция 13 принятие решений в организациях
- •1. Личные и деловые решения
- •2. Модель ограниченной рациональности
- •3. Эскалация решений
- •4. Тактические и стратегические решения
- •5. Модель «игра влияний» в руководстве организации
- •6. Модель обеспечения профессионального качества подготовки решений
- •7. Топографическая модель организации
- •8. Государственные или частные организации: что эффективнее?
- •9. Централизация в принятии решений: попытка административной революции
- •10. Система «ринго»
- •11. Планирование выполнения решений
- •12. Виртуальные организации
- •13. Управление знаниями в организациях
- •14. Метод милс (Многоуровневые Информационно-Логические Структуры)
- •15. Таблицы решений
10. Формальная постановка задачи классификации
Задача классификации с явными диагностическими признаками может быть сформулирована следующим образом [7].
Дано: N - число диагностических признаков; S i - число упорядоченных и, как правило, вербальных оценок качества на шкале i-гo диагностического признака; Xi ={x 1i ,x 2i ,...,x si } - множество оценок на шкале i-гo признака; Q - количество диагностических классов ( P 1 , P 2 ,..., P Q ), к которым могут принадлежать классифицируемые объекты.
Декартово произведение А шкал признаков определяет множество всех гипотетически возможных состояний, описываемых диагностическими признаками. Состояние a i , принадлежащее А, описывается вектором (а i 1 , а i 2 ,...,а iN), где j -м компонентом является одно из значений на шкале i -г o диагностического признака.
Требуется: на основе знаний эксперта классифицировать все векторы а i отнеся каждый из них к одному или нескольким классам решений.
Особенностью данной постановки задачи является следующее. Предположим, что эксперт (врач, геолог, инженер) определил полный набор диагностических признаков, необходимых ему при решении задачи классификации. Этим задано полное пространство всех возможных состояний объекта исследования (больного, месторождения, механизма и т.д.). В приведенной выше постановке задачи впервые ставится целью построение полной классификации, т.е. классификации всех возможных состояний объекта исследования. В отличие от этого в других постановках речь обычно идет о выявлении какой-то части знаний [9].
Данная постановка задачи основана на предположении, что эксперт обладает полнотой знаний. Необходим подход, позволяющий их выявить.
11. Основные идеи метода экспертной классификации
Для решения поставленной выше задачи были разработаны методы, основанные на идеях [7], рассмотренных далее.
11.1. Структуризация проблем
Чтобы передать знания компьютеру, нужен общий язык, характеризующий конкретную предметную область. Удобен язык признаков (или характеристик), описывающих объект исследования. Таким объектом при построении баз медицинских знаний является больной, обратившийся к врачу с жалобами на боли. Признаки или характеристики в данном случае описывают состояние больного: локализация болей, их характер, иррадиация, частота пульса, артериальное давление, температура и т.д.
Как определить перечень признаков, адекватно представляющий состояние объекта исследования? Для этой цели разработана человекомашинная процедура АРИАДНА [10], которая имитирует диалог по телефону между неопытным специалистом, находящимся рядом с объектом исследования и проводящим измерения, и экспертом, находящимся далеко от объекта. Диалог строится таким образом, что компьютер задает вопросы эксперту, использует его ответы для постановки новых вопросов и т.д. Приведем пример такого диалога.
Компьютер: Вас просят помочь в постановке диагноза. Начинающий врач сообщает вам по телефону, что пациент без сознания и что подозревается диабетическая кома. Каким будет ваш первый вопрос?
Эксперт: Начало заболевания - постепенное или внезапное?
Компьютер: А что более характерно для диабетической комы?
Эксперт: Постепенное начало.
Компьютер: Предположим, что начало было постепенное. Каким будет ваш следующий вопрос?
В ходе диалога эксперт называет признаки и их возможные значения, упорядочивает признаки по характерности для данного заболевания, решая привычные для себя задачи постановки диагноза.
В системе АРИАДНА использованы идеи «диагностических игр», предложенные И.М. Гельфандом [11].
Итак, при подобном подходе процедуры структуризации могут быть представлены следующим образом. Компьютер ставит вопросы эксперту, приглашая его классифицировать объект исследования и называть один за другим признаки, используемые при классификации и их возможные значения для каждого класса решений.
Результатом этого этапа является совокупность признаков, необходимая для полной классификации объектов определенного типа, все возможные значения этих признаков, а также перечень классов решений.