
- •Лекция 1. Основные понятия и определения
- •1. Люди, принимающие решения
- •2. Люди и их роли в процессе принятия решений
- •3. Особая важность проблем индивидуального выбора
- •4. Альтернативы
- •5. Критерии
- •6. Оценки по критериям
- •7. Процесс принятия решений
- •8. Множество Эджворта-Парето
- •9. Типовые задачи принятия решений
- •10. Пример согласования интересов лпр и активных групп
- •11. Многодисциплинарный характер науки о принятии решений
- •Лекция 2. Аксиоматические теории рационального поведения
- •1. Рациональный выбор в экономике
- •2. Аксиомы рационального поведения
- •3. Задачи с вазами
- •4. Деревья решений
- •5. Парадокс Алле
- •6. Нерациональное поведение. Эвристики и смещения
- •7. Объяснения отклонений от рационального поведения
- •8. Должны ли экономисты принимать во внимание отклонения поведения людей от рационального?
- •9. Теория проспектов
- •10. Теория проспектов и парадокс Алле
- •11. Новые парадоксы
- •Волшебные страны Компьютерная игра в Университете Власти
- •Лекция 3. Многокритериальные решения при объективных моделях
- •1. Модели
- •2. Подход исследования операций
- •3. Появление многокритериальное
- •4. Первые многокритериальные решения: сколько строить ракет?
- •5. Разные типы проблем
- •6. Два пространства
- •7. Многокритериальный анализ экономической политики
- •8. Две трудности для лпр
- •9. Исследование решений на множестве э-п
- •10. Постановка многокритериальной задачи линейного программирования
- •11. Человекомашинные процедуры
- •12. Весовые коэффициенты важности критериев
- •13. Классификация чмп
- •14. Прямые человекомашинные процедуры
- •15. Процедуры оценки векторов
- •16. Процедуры поиска удовлетворительных значений критериев
- •Фаза расчетов
- •Фаза анализа
- •17. Пример применения метода stem : как управлять персоналом
- •Волшебные страны Обращение ректора Университета Власти к студентам
- •Лекция 4. Оценка многокритериальных альтернатив: многокритериальная теория полезности
- •1. Снова об этапах процесса принятия решений
- •2. Различные группы задач принятия решений
- •Задачи первой группы
- •Задачи второй группы
- •3. Пример
- •4. Многокритериальная теория полезности ( maut )
- •4.1. Основные этапы подхода maut
- •4.2. Аксиоматическое обоснование
- •4.3. Основные теоремы
- •4.4. Построение однокритериальных функций полезности
- •4.5. Проверка условий независимости
- •4.6. Определение весовых коэффициентов (коэффициентов важности) критериев
- •4.7. Определение полезности альтернатив
- •5. Метод smart – простой метод многокритериальной оценки
- •6. Первый эвристический метод
- •7. Веса критериев
- •8. Как люди назначают веса критериев
- •9. Практическое применение
- •Библиографический список
- •Волшебные страны Компьютерная генетика
- •Лекция 5. Оценка многокритериальных альтернатив: подход аналитической иерархии
- •1. Основные этапы подхода аналитической иерархии
- •2. Структуризация
- •3. Попарные сравнения
- •4. Вычисление коэффициентов важности
- •5. Определение наилучшей альтернативы
- •6. Проверка согласованности суждений лпр
- •7. Система поддержки принятия решений Expert Choice
- •8. Контрпримеры и противоречия
- •9. Мультипликативный метод аналитической иерархии
- •10. Пример практического применения подхода анр
- •Библиографический список
- •Лекция 6.Оценка многокритериальных альтернатив: методыelectre
- •1. Конструктивистский подход
- •2. Два основных этапа
- •3. Свойства бинарных отношений
- •4. Метод electre I
- •5. Метод electre II
- •6. Метод electre III
- •7. Пример
- •8. Пример практического применения метода electre III
- •9. Некоторые сопоставления
- •Модель человеческого мозга «Грандом», созданная в Монтландии
- •Лекция 7. Человеческая система переработки информации и ее связь с принятием решений
- •1. Этапы переработки информации, типы памяти
- •2. Модель памяти
- •3. Кратковременная память
- •3.1. Три этапа переработки информации в кратковременной памяти
- •3.2. Кодирование
- •3.3. Хранение
- •3.4. Магическое число
- •3.5. Денежный насос
- •3.6. Последовательная обработка информации
- •3.7. Извлечение
- •4. Дескриптивные исследования многокритериальных проблем
- •4.1. Прослеживание процесса принятия решений
- •4.2. Результаты дескриптивных исследований
- •5. Долговременная память
- •5.1. Кодирование
- •5.2. Хранение
- •5.3. Извлечение
- •6. Рабочая память
- •7. Психологические теории человеческого поведения при принятии решений
- •7.1. Теория поиска доминантной структуры
- •7.2. Теория конструирования стратегий
- •8. Исследование возможностей человека в задачах классификации многомерных объектов
- •8.1. Схема экспериментов
- •8.2. Параметры, используемые для оценки поведения испытуемых в задачах классификации
- •8.3. Описание экспериментов
- •8.4. Результаты экспериментов
- •8.5. Обсуждение результатов первой серии экспериментов
- •8.6. Анализ и обсуждение результатов второй серии экспериментов
- •8.7. Общее обсуждение
- •Библиографический список
- •История бюрократии в Монтландии
- •Лекция 8. Оценка многокритериальных альтернатив: вербальный анализ решений
- •1. Особый класс задач принятия решений: неструктурированные проблемы с качественными переменными
- •2. Качественная модель лица , принимающего решения
- •2.1. Черты человеческой системы переработки информации
- •2.2 Особенности поведения человека при принятии решений
- •3. Какими должны быть методы анализа неструктурированных проблем
- •4. Измерения
- •4.1. Качественные измерения
- •4.2. Сравнительные качественные оценки
- •5. Построение решающего правила
- •6. Проверка информации лпр на непротиворечивость
- •7. Обучающие процедуры
- •8. Получение объяснений
- •9. Основные характеристики методов вербального анализа решений
- •10. Метод запрос ( Замкнутые Процедуры у Опорных Ситуаций )
- •10.1. Постановка задачи
- •10. 2. Пример : как оценить проекты ?
- •10.3. Выявление предпочтений лпр
- •10.4. Сравнение альтернатив
- •10.5. Преимущества метода запрос
- •10.6. Практическое применение метода запрос
- •11. Сравнение трех сппр
- •Библиографический список
- •Контрольное задание
- •Компьютерные двойники
- •Лекция 9. Повторяющиеся решения. Построение баз экспертных знаний
- •1. Процесс мышления как манипулирование символами
- •2. Два типа знания
- •3. Время и условия становления эксперта
- •4. Трансформация системы переработки информации
- •5. Иерархические структуры хранения знаний
- •6. Черты поведения эксперта
- •7. Подсознательный характер экспертных знаний
- •8. Трудности получения экспертных знаний
- •9. Экспертные знания в задачах классификации с явными признаками
- •10. Формальная постановка задачи классификации
- •11. Основные идеи метода экспертной классификации
- •11.1. Структуризация проблем
- •11.2. Классификация состояний объекта исследования
- •11.3. Гипотеза о характерности
- •11.4. Проверка информации эксперта и гипотезы о характерности
- •11.5. Определение последовательности состояний для предъявления эксперту в процессе классификации
- •11.6. Трудоемкость построения баз знаний
- •11.7. Проверка качества баз знаний
- •12. Граничные элементы классификации
- •13. Решающие правила экспертов
- •14. Система диагностики заболеваний группы
- •Библиографический список
- •Лекция 10. Анализ риска
- •1. Типы риска
- •2. Особая сложность задач анализа риска
- •3. Направления исследований
- •4. Измерение риска
- •4.1. Инженерный подход
- •4.2. Модельный подход
- •4.3. Восприятие риска
- •4.4. Сопоставление разных способов измерения риска
- •5. Установление стандартов
- •6. Человекомашинное взаимодействие
- •7. Риск катастрофических событий как независимый критерий
- •8. Распределения "с тяжелыми хвостами"”
- •9. Аварии и их анализ
- •10. Управление риском
- •11. Практический пример: выбор месторасположения нового объекта с учетом факторов риска
- •11.1. Конкретная задача: альтернативы
- •11.2. Активные группы
- •11.3. Критерии
- •11.4. Особенности задачи выбора с точки зрения теории принятия решений
- •11.5. Анализ вариантов
- •11.6. Конструирование нового варианта
- •Библиографический список
- •Контрольное задание
- •Волшебные страны Компьютерная демократия Монтландии
- •Лекция 11. Коллективные решения
- •1. Парадокс Кондорсе
- •2. Правило большинства голосов
- •3. Метод Борда
- •4. Аксиомы Эрроу
- •5. Попытки пересмотра аксиом
- •6. Теорема невозможности и реальная жизнь
- •7. Принятие коллективных решений в малых группах
- •8. Организация и проведение конференций по принятию решений
- •9. Метод организации работы гпр
- •9.1. Предварительные этапы
- •9.2. Анализ собранной информации
- •9.3. Проведение конференции по принятию решений
- •9.4. Практический пример
- •Библиографический список
- •Волшебные страны Военный переворот в Свапландии ( Статья в оппозиционной газете «Вечерний наблюдатель» , выходящей в столице Монтландии - Олоне).
- •К событиям в Свапландии ( Статья в правительственной газете «Олон - пост» , выходящей в столице Монтландии - Олоне .)
- •Лекция 12. Многокритериальная задача о назначениях
- •1. Определение и особенности
- •2. Постановка многокритериальной задачи о назначениях
- •2.1. Содержательная постановка задачи
- •2.2. Критерий оптимальности решения мзн
- •2.3. Формальная постановка задачи
- •3. Пример
- •4. Различные типы задач о назначениях
- •5. Основные алгоритмы решения многокритериальной задачи о назначениях
- •5.1. Различные индексы соответствия
- •5.2. Поиск решения многокритериальной задачи о назначениях
- •6. Этап анализа данных и проверки существования идеального решения
- •7. Формирование области допустимых решений
- •8. Выявление предпочтений лпр
- •8.1. Статистические оценки сложности задач выявления предпочтений лпр
- •8.2. Основная процедура выявления предпочтений лпр
- •8.3. Выявление предпочтений лпр ; вспомогательная процедура
- •9. Поиск окончательного решения многокритериальной задачи о назначениях
- •9.1. Поиск решения мзн типа а
- •9.2. Поиск решения мзн типа в
- •9.3. Поиск решения мзн типа с
- •9.4. Поиск решения мзн типа d
- •10. Практическое применение
- •Библиографический список
- •Контрольное задание
- •Волшебные страны Стратегия правления в Свапландии (Статья в Правительственной газете «Олон-пост», выходящей в столице Монтландии - Олоне.)
- •Прыжок в никуда
- •Лекция 13 принятие решений в организациях
- •1. Личные и деловые решения
- •2. Модель ограниченной рациональности
- •3. Эскалация решений
- •4. Тактические и стратегические решения
- •5. Модель «игра влияний» в руководстве организации
- •6. Модель обеспечения профессионального качества подготовки решений
- •7. Топографическая модель организации
- •8. Государственные или частные организации: что эффективнее?
- •9. Централизация в принятии решений: попытка административной революции
- •10. Система «ринго»
- •11. Планирование выполнения решений
- •12. Виртуальные организации
- •13. Управление знаниями в организациях
- •14. Метод милс (Многоуровневые Информационно-Логические Структуры)
- •15. Таблицы решений
16. Процедуры поиска удовлетворительных значений критериев
Эти процедуры также предназначены для систематического поиска наилучшего решения. Однако такой поиск осуществляется по-иному: в порядке очереди определяется приемлемое значение по каждому из критериев.
Примером ЧМП поиска удовлетворительных значений крит ериев служит процедура STEM — одна из первых ЧМП [11]. Она предназначена для решения многокритериальных задач линейного программирования, одной из которых как раз и явл яется многокритериальная транспортная задача (см. выше).
Рассмотрим фазы расчетов и анализа ЧМП STEM .
Фаза расчетов
1. Проводится оптимизация по каждому критерию отдель но, при этом значения всех остальных критериев заносятся в табл. 3.2.
Таблица 3.2 Относительные значения критериев
Критерий |
C1 |
C2 |
... |
CN |
С1 |
1 |
C21 |
... |
CN1 |
С2 |
C12 |
1 |
... |
CN2 |
... |
... |
... |
... |
... |
СN |
C1N |
C2N |
... |
1 |
В таблице C1j— значение 1-го критерия при оптимизации по j -му критерию. Ясно, что диагональные элементы равны един ице, а все прочие меньше единицы. Очевидно, что после норм ирования наибольшее значение каждого критерия равно един ице, а наименьшее - нулю. Любой столбец содержит значения соответствующего критерия, достигаемые при оптимизации по всем критериям.
В таблице представлена ценная информация, характеризующая область допустимых значений. Так, если значения как их-то двух столбцов близки для каждой из строк (кроме строк, содержащих единицы в этих столбцах), то два соответс твующих критерия сильно зависимы, так как изменения всех иных критериев (кроме этих двух) одинаково влияют на эти два критерия. Можно выявить также и противоречивые критер ии: высокая оценка по одному сопровождается низкой оценк ой по другому. Такая информация весьма полезна для ЛПР, изучающего возможности, предоставляемые областью D допуст имых значений.
2. По табл. 3.2 вычисляются индексы критериев.
Пусть ai — среднее значение, взятое по всем элементам i -го столбца (кроме единицы). Тогда li (индекс i -го критерия) вы числяется из соотношений:
(3)
Индекс критериев может быть назван коэффициентом внимания, которое следует уделять критерию при поиске решения.
Предположим, что все элементы i -го столбца в табл. 3.2 близки к единице. Тогда среднее значение тоже близко к един ице, (1 — ai ) мало и соответствующий индекс мал. Действит ельно, если при оптимизации по другим критериям значение данного критерия близко к наилучшему, то ему вряд ли стоит уделять внимание. Наоборот, критерию, сильно зависящему от изменений других критериев (од мало), должны соответствовать большие значения индекса. Индексы называют иногда технич ескими весами потому, что в отличие от весов wi они не наз начаются ЛПР, а вычисляются.
3. Производится оптимизация по глобальному критерию. Глобальный критерий имеет вид
(4)
где li определяются из (3).
Решение, найденное при оптимизации, предъявляется ЛПР.
Фаза анализа
1. ЛПР анализирует вектор значений критериев у1 най денный при оптимизации по критерию (4). Затем ему задается вопрос: все ли компоненты вектора y 1 имеют удовлетворитель ные значения? Если да, то решение получено. Если нет, то ЛПР указывает один критерий с наименее удовлетворительным значением. 2. ЛПР просят назначить для критерия с наименее удовле творительным значением пороговое значение h , при достиже нии которого можно признать этот критерий имеющим удовле творительное значение:
C >= 4 (5)
Условие (5) добавляется к совокупности линейных равенств и неравенств, определяющих область D допустимых значений переменных. Таким образом, возникает уже новая область доп устимых значений.
На этом фаза анализа заканчивается. Следующий шаг нач инается с фазы расчетов при новой области допустимых знач ений и т.д. При достижении удовлетворительных для ЛПР значений по всем критериям ЧМП останавливается.