Тема 1. Основы теории оптимизации
.pdf1
1.Основы теории оптимизации 1.1.Постановка и решение задачи оптимизации
В наиболее общем смысле теория оптимизации представляет собой совокупность фундаментальных математических результатов и численных методов, ориентированных на нахождение наилучшего варианта из множества возможных альтернатив без их полного перебора и оценивания.
Постановка любой задачи оптимизации включает в себя 4 этапа.
1)Установление границ подлежащей оптимизации системы
Здесь под системой понимается некая изолированная часть реального мира – например, промышленная установка, предприятие и т.д. Чтобы выделить изучаемую систему из внешней среды, важно четко определить ее границы и зафиксировать на некотором заранее выбранном уровне представления ее взаимосвязи с внешней средой. Часто первоначальный
выбор границ системы оказывается слишком жёстким и тогда для получения адекватного решения в систему включают дополнительные подсистемы, оказывающие существенное влияние на ее функционирование. Однако это ведёт к увеличению размерности и сложности системы, значительно затрудняет ее анализ.
2)Выбор характеристического критерия
Характеристический критерий представляет собой скалярную меру “качества” решения. Наилучшему решению задачи оптимизации обязательно отвечает оптимальное, т.е. максимальное или минимальное, значение критерия. В прикладных задачах характеристический критерий часто имеет экономический или технологический характер, например, им может быть величина прибыли предприятия или масса, т.е. задача может состоять в максимизации прибыли или минимизации массы двигателя.
Критериев может быть много и тогда задача становится многокритериальной. Существуют специальные методы решения многокритериальных задач, но можно привести многокритериальную задачу к однокритериальной. Для этого один из критериев выбирается в качестве первичного, а остальные становятся вторичными. Первичный критерий используется как характеристический, а вторичные формируют ограничения задачи. (Многокритериальная оптимизация: Мат. аспекты / Б. А. Березовский, Ю. М. Барышников, В. И. Борзенко, Л. М. Кемпнер; М. Наука 1989)
3)Выбор независимых переменных, используемых для определения характеристик системы и идентификации вариантов решения Необходимо разделить переменные на те, значения которых могут изменяться в достаточно
широком диапазоне и те, значения которых фиксированы и определяются внешними факторами. Первые являются независимыми переменными, а вторые – параметрами задачи.
Далее необходимо провести различие между параметрами задачи, которые могут предполагаться постоянными, и параметрами, которые испытывают флуктуации под воздействием внешней среды.
Важно, что выбор определенного набора независимых переменных в конкретной прикладной задаче почти всегда представляет собой компромисс между стремлением учесть все переменные, которые влияют на функционирование системы, и стремлением выбрать только те из них, чье влияние на выбранный характеристический критерий наиболее существенно.
2
Последнее стремление продиктовано необходимостью разумного упрощения задачи.
4)Построение математической модели системы
Модель системы описывает взаимосвязь между переменными и отражает степень их влияния на характеристический критерий.
В самом общем представлении структура модели в технике включает основные уравнения материальных и энергетических балансов, соотношения, связанные с проектными решениями, а также уравнения, описывающие физические процессы, протекающие в системе. Эти уравнения обычно дополняются неравенствами, определяющими области допустимых значений переменных.
“Корректная постановка задачи служит ключом к успеху оптимизационного исследования и ассоциируется в большей степени с искусством, нежели с точной наукой.”[3] Решение оптимизационной задачи – это приемлемый набор значений независимых
переменных, которому отвечает оптимальное значение характеристического критерия.
1.3. Структура оптимизационных задач
Несмотря на то, что прикладные задачи оптимизации относятся к различным областям практической деятельности и представляют различные системы, они имеют общую форму. Все эти задачи можно охарактеризовать как задачи минимизации вещественнозначной функции f (x) с ограничениями на ее N -мерный векторный аргумент x .
Общий вид задачи условной оптимизации
Минимизировать f (x) : R N R1 при ограничениях |
|
|||||||
|
|
|
|
|
|
|
|
|
hk (x) 0 , |
k 1...K |
(1.1) |
||||||
g j (x) 0 , |
|
|
|
|
|
|
||
|
j 1...J |
(1.2) |
||||||
xiL xi xiR , |
|
|
|
|||||
i 1...I |
(1.3) |
Здесь f (x) - целевая функция задачи, уравнения hk (x) 0 – называются ограничениями в виде равенств, а неравенства g j (x) 0 – ограничениями в виде неравенств. Предполагается, что все функции в задаче вещественнозначны, а число ограничений конечно.
Задачи оптимизации можно классифицировать в соответствии с видом функций f (x) , g(x) и h(x) , а также размерностью вектора x .
Если ограничения (1.1) – (1.3) отсутствуют, то это задача безусловной оптимизации. Такие задачи с N 1 называются задачами одномерной оптимизации, при N 1 – многомерной безусловной оптимизации.
Если в задаче оптимизации функции hk (x) и g j (x) линейны, то это задача с линейными ограничениями. При этом целевая функция может быть как линейной, так и нелинейной. Задача условной оптимизации, в которой все функции линейны, называется задачей
3
линейного программирования (ЛП). Если при этом координаты вектора x должны принимать только целые значения, то задача называется задачей целочисленного программирования
(ЦЛП).
Задачи с нелинейными целевой функцией и/или ограничениями называются задачами нелинейного программирования (НЛП).
1.3. Практическое применение методов оптимизации
К задачам на поиск оптимума сводятся многие из проблем математики, системного анализа, техники, экономики, медицины и статистики. В частности они возникают при построении математических моделей, когда нужно определить такую структуру и такие параметры модели, которые обеспечивали бы наилучшее согласование с реальностью. Другой традиционная область применения оптимизации – процедуры принятия решений, т.к. большинство из них нацелено именно на “оптимальный” выбор. Помимо оптимизационных задач, представляющих самостоятельный интерес, на практике часто возникают задачи, которые “встроены” в вычислительные процессы, где играют хотя и существенную, но все же вспомогательную роль.