
- •Оптика. 1.1. Свет как электромагнитные волны. Геометрическая оптика
- •1.2. Интерференция света
- •17. Чем объясняется разнообразие окраски крыльев бабочек, хотя красящий пигмент в них отсутствует?
- •18. Какое явление лежит в основе просветления оптики?
- •19. Как изменяется фаза колебаний при отражении света от оптически более плотной среды?
- •21. Разность хода двух интерферирующих лучей монохроматического света равна 0,3. Определите разность фаз колебаний.
- •22. Чему равно изменение разности хода лучей Ds при изменении разности фаз на 2p?
- •29. Почему просветлённый объектив при наблюдении на отражение кажется окрашенным в красный или сине-фиолетовый цвет?
- •32. Во сколько раз изменится ширина интерференционных полос на экране в опыте Юнга, если фиолетовый светофильтр (0,4 мкм) заменить красным (0,7 мкм)?
- •1.3. Дифракция волн
- •В чем заключается принцип Гюйгенса?
- •Почему в методе зон Френеля они выбираются таким образом, чтобы расстояния от соседних зон различались на/2?
- •Почему существует предел разрешающей способности оптических приборов? Из-за неточности изготовителя
- •1.4. Электромагнитные волны в веществе
- •2.2. Экспериментальное обоснование основных идей квантовой теории
- •2.3 Корпускулярно-волновой дуализм
- •2.5. Атом водорода в квантовой механике. Принцип Паули.
- •16.. Сформулируйте принцип Паули.
- •31.Определите, во сколько раз орбитальный момент импульса электрона Li, находящегося в f -состоянии, больше, чем для электрона в
- •11. Какую протяженность в пространстве занимает лазерный импульс длительностью 10-12 с? Если лазер дает красный свет, то сколько колебаний пройдет на протяжении импульса?
- •2.7. Элементы квантовой статистики
- •2.8. Конденсированное состояние
- •Определите ширину запрещенной зоны собственного полупроводника, если при температурах т1 и т2 его сопротивления соответственно равны r1 и r2.
- •3. Атомное ядро и элементарные частицы
В чем заключается метод зон Френеля?Разбиение волновой поверхности S на зоны, границы первой (центр) зоны служат точки поверхности S наход на расстоянии l+λ\2 от точки M. Точки сферы наход на расстоянии l+2λ\2, l+3λ\2 от точки M, образ зоны Френеля. При наложении этих колебаний они взаимно ослаб друг друга A=A1-A2+A3-A4…+Ai С увелич номера зоны,уменьш интенсивность излучения зоны в насправлении т.M, т.е уменьш Ai A1>Ai>A3…>Ai
Почему в методе зон Френеля они выбираются таким образом, чтобы расстояния от соседних зон различались на/2?
/2-разность хода. Колебания, возбуждаемые в точке Р, между двумя соседними зонами, противоположны по фазе
Как связаны между собой амплитуды колебаний, приходящих в рассматриваемую точку от соседних зон Френеля?
Ауменьшается из-за увеличения расстояния
до т. М. Ам
от некоторой
m-ой
зоны равна сред арифмет от амплитуды
примыкающих к ней зон, т.е.
Ам = (Ам-1+Ам+1)/2; А=А1/2
При каком количестве зон Френеля в рассматриваемой точке будет наблюдаться светлое пятно? Темное пятно? При четном минимум – темное, а светлое наоборот
Условие дифракционного минимума от одной щели.
Как связана разность хода с разностью фаз в световой волне? Оптической разностью хода двух лучей называется ∆s = s1 – s2. (s оптическая длина пути) Разность фаз ∆φ двух когерентных волн от одного источника, одна из которых проходит длину пути l1 в среде с абсолютным показателем преломления n1, а другая — длину пути l2 в среде с абс-ым показателем преломления n2:
, гдеs1 = n1· l1,
Что собой представляет дифракционная решетка? Дифракционная решётка — оптический прибор, работающий по принципу дифракции света, представляет собой совокупность большого числа регулярно расположенных штрихов (щелей, выступов), нанесённых на некоторую поверхность. Первое описание явления сделал Джеймс Грегори, который использовал в качестве решётки птичьи перья.
Что такое период дифракционной решётки? Расстояние, через которое повторяются штрихи на решётке, называют периодом дифракционной решётки. Обозначают буквой d. Если известно число штрихов (N), приходящихся на 1 мм решётки, то период решётки находят по формуле: 0,001 / N
Условие главных дифракционных максимумов от дифракционной решетки. dsinφ = ±2m *λ /2
Почему при прохождении света через дифракционную решетку естественный свет разлагается в спектр? Положение главных максимумов зависит от длины волны λ, поэтому при пропускании через решетку белого света все максимумы кроме центрального(m=0), разложится в спектр, фиолет область которого будет обращена к центру дифрак картины, красная наружу.
Что называется разрешающей способностью дифракционной решётки?
Разреш-я спос-сть решетки оказ-ется равной R = mN. Таким образом, разрешающая способность решетки зависит от порядка m спектра и от общего числа N штрихов рабочей части решетки, т.е. той части, через которую проходит исследуемое излучение и от которой зависит результирующая дифракционная картина. Разреш способ-тью / дифракционной решетки характеризует способность решетки разделять максимумы освещенности, для двух близких длинам волн 1 и 2 в данном спектре. Здесь 2 –1. Если /kN, то максимумы освещенности для 1 и 2 не разрешаются в спектре k–го порядка.
Почему существует предел разрешающей способности оптических приборов? Из-за неточности изготовителя
Если период дифракционной решётки 3,6 мкм, то свет какой длины волны будет наблюдаться в третьем порядке дифракции? dsinφ=kλ, λ=d/k = 3,6/3=1,2 мкм
Расстояние между штрихами дифракционной решётки d = 4 мкм. На решётку падает нормально свет с длиной волны = 0,6 мкм. Максимум какого наибольшего порядка даёт эта решётка?
d=4 мкм, λ=0.6 мкм, dsin = n, sin=1,n=d/λ=4/0.6=6.66 мак. порядок - 6
Вычислите радиус пятой зоны Френеля для плоского волнового фронта, если точка наблюдения находится на расстоянии 1 м от фронта волны. Длина волны равна 0,5 мкм.
Расстояние от внешнего края k-ой зоны Френеля до т наблюд R равно bk=b+k *λ/2. Rк 2 +b2 = (b+k *λ/2)2 . Rк 2 +b2 = b2 +bkλ+ k2 *λ2/4; Rк 2 = bkλ+ k2 *λ2/4; k2 *λ2/4 можно пренебречь. R5=√(bkλ)=>r5=1.58 мм
Постоянная дифракционной решётки в 4 раза больше длины световой волны монохроматического света, нормально падающего на ее поверхность. Определить угол между двумя первыми симметричными дифракционными максимумами.
d=4, dsin=k=>sin=(k)/d=(k)/(4)=1/2=>=300
На щель падает нормально параллельный пучок монохроматического света с длиной волны . Ширина щели равна 6. Под каким углом будет наблюдаться третий дифракционный минимум спектра?
dsinφ=kλ, по условию а=6λ, к=3, отсюда 6λsinφ=3λ; sinφ=0,5; φ=30˚
На дифракционную решетку нормально падает пучок света от разрядной трубки, наполненной гелием. На какую линию в спектре третьего порядка накладывается красная линия гелия ( = 6,7·10-5 см) спектра второго порядка? dsinφ=kλ1 ; dsinφ=3λ2, отсюда λ2 = 2/3 λ =447 нм – синяя линия спектра гелия
Найти наибольший порядок спектра для жёлтой линии натрия λ = 5890Å, если постоянная дифракционной решетки d = 2 мкм.
Из формулы дифрак решетки dsinφ=kλ, найдем к= dsinφ/λ. Поскольку sinφ≤1, то к≤d/λ=3,4, т.е. k max = 3
Обоснуйте возможность использования дифракционной решётки в спектральных приборах вместо призмы для разложения света в спектр.
При освещении решетки белым светом на экране наблюд неокраш центр макс нулевого порядка, а по обе стороны от него – дифрак спектры 1,2-го и т.д. порядков, в кот наблюд непрерыв переход от окраски сине-фиолет цвета у внутр края спектра к красной у внешнего края
Дифракционный максимум второго порядка дифракционной решетки наблюдается под углом 30º. Сколько штрихов на 1 мм имеет эта решетка, если длина волны падающего излучения равна 0,5 мкм? dsinφ=kλ; d=1/N=>N=1/d ; n=N/l=sinφ/mλ; n=250 mm-1
Постоянная дифракционной решетки d = 2·10 –6 м. Какую наибольшую длину волны можно наблюдать в спектре этой решетки? Дано d= 2·10 –6 м, λ-? Решение: условие максимума dsinφ=mλ, λ=dsinφ/m, берем первый порядок и синус максимальный =>λ= 2·10 –6*1 / 1=2·10 –6 м
Дифракционная решётка имеет 125 штрихов на 1 мм её длины. При освещении решётки светом длиной волны 420 нм на экране, расположенном на расстоянии 2,5 м от решётки, видны синие линии. Определите расстояние от центральной линии до первой линии на экране Дано d=1/N=10-3/125, λсин=435нм=435*10-9 м. решение dsinφ=mλ при малых углах sinφ=tgφ, tgφ=x/L,х-расстояние мужду центр макисм и близ лежащ минимумом; d* x/L=mλ; dx/L=λ; x=Lλ/d=(125*2.5*435*10-9 )/10-3 = 135937.5*10-6
На щель шириной 0,1 мм нормально падает параллельный пучок света от монохроматического источника с λ = 0,6 мкм. Чему равна ширина центрального максимума в дифракционной картине, проецируемой с помощью линзы, находящейся непосредственно за щелью, на экран, отстоящий от линзы на расстоянии L = 1 м?
λ=0.6 мкм=6*10-7 м, l=1м,m=1, а=0,1мм=10-4м, b-? Решение: min=аsinφ=± m λ, m=1; sinφ= λ /а; sinφ ≈tgφ; b=2ltgφ≈2lλ/a=1.2см
Чему равен радиус третьей зоны Френеля для плоского волнового фронта (λ = 0,6 мкм) для точки, находящейся на расстоянии b = 1 м от фронта волны? λ=0.6 мкм=6*10-7 м,m=3, b=1, r-? Решение: R2 +b2 = (b+k *λ/2)2 ; R2 = bmλ+m2λ2/4; λ<<b; r=√bmλ; r=√3bλ=√3*6*10-7 м
Дифракционная решетка с 5500 штрих/см имеет ширину 3,6 см. На решетку падает свет с длиной волны 624 нм. На сколько могут различаться две длины волны, если их надо разрешить в любом порядке? N=5500ш/см=550000штрихов/м, λ1=624 нм=624*10-9 м , λ2-λ1 -? Решение: λ2/λ2-λ1=mN (берем первый порядок ); λ2=Nλ1/1-N=(55*104*624*10-9)/549999=624.001 нм; λ2-λ1=624.001-624=0.001нм
Какова должна быть постоянная дифракционной решетки, чтобы в первом порядке были разрешены линии спектра калия 1 = 404,4 нм и 2 = 404,7 нм? Ширина решетки l =3 см. дано:1 = 404,4 нм=404,4*10-9 м, 2 = 404,7 нм=404,7*10-9м, l=3 cm=3*10-2 d-? Решение: λ2/λ2-λ1=mN (берем первый порядок );N= 404,7*10-9/404,7*10-9- 404,4*10-9 = 1349; d=l/N; d=3*10-2 / 1349=2*10-5
При падении света с длиной волны 0,5 мкм на дифракционную решетку третий дифракционный максимум наблюдается под углом 30º. Чему равна постоянная дифракционной решетки? dsinφ=mλ; λ=0.5мкмһ5*10-7м, m=3 , sinφ=30. решение d= mλ/ sinφ=30*10-7
Постоянная дифракционной решетки d = 2·10 –6 м. Какой наибольший порядок спектра можно видеть при освещении её светом длиной волны 1 мкм?λ=1 мкм=10-6 м dsinφ=mλ; m= dsinφ/λ=2
Определите радиус четвертой зоны Френеля, если радиус второй зоны Френеля для плоского волнового фронта равен 2 мм.
M1=2,м2 =4 , r1=2 мм=2*10-3 м, r2-? Решение: r2 +b2 = (b+k *λ/2)2 ; R2 = bmλ+m2λ2/4; λ<<b; r=√bmλ; r1/r2=√m1/m2; r2=r1√m2/m1=2.83мм
Определите постоянную дифракционной решетки, если она в первом порядке разрешает две спектральные линии калия (1 = 578 нм и 2 = 580 нм). Длина решетки 1 см. λ1= 578 нм=5,78*10-7 м, λ2=580*10-7 м, l=1 cm=10-2 м? d-? Решение: R=λ1/δλ=mN; N=λ1/δλm; δλ=λ2-λ1; d=1/N=lδλm/λ1; d=34.6мкм