Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
sessia_11 / 6,11, Надежность Электоснабжения / надежность учебник.doc
Скачиваний:
196
Добавлен:
16.02.2016
Размер:
1.21 Mб
Скачать

Случайные величины и функции распределения

Строго понятие "случайная величина" определяется так: Пусть имеется пространство элементарных событий U, на нем построено поле событий и для каждого события А из этого поля определена вероятность Р(А). Каждому элементарному событию gi из U сопоставим число ξi. Потребуем, чтобы для любого х (-∞ < x < +∞) множество А тех g, для которых ξ < x , принадлежало полю событий, т.е. для него определена вероятность Р{ξ < x} = P(A) = F(x). Тогда ξ называется случайной величиной, а F(x) - ее функцией распределения.

Проще можно сказать, что случайная величина - это величина, значение которой зависит от случая, если для всех х известна функция распределения F(x), т.е. вероятность того, что это значение меньше х. В строгом определении задание пространства элементарных событий означает по существу задание условий, в которых возникают те или иные значения случайной величины, а если эти условия заданы, то тем самым определена и F(x). Например, нельзя сказать, что "температура - случайная величина". Но "температура воздуха, измеряемая на данной метеостанции в случайный момент времени в течение года" - случайная величина, .Свойства функции распределения:

  1. F(-∞) = 0

  2. F(+∞) = 1

  3. F(x) - не убывающая функция х

Случайные величины могут быть непрерывными, т.е. принимать любые значения в некотором интервале (например, упомянутые выше температуры). У них F(x) - непрерывная функция. Случайные величины могут быть дискретными т.е. принимать только конечное или счетное множество определенных значений (например, число очков при бросании игральной кости; число телефонных звонков, поступающих конкретному абоненту в течение суток). У таких величин F(x) имеет разрывы в точках, соответствующих принимаемым значениям. Такие величины удобнее характеризовать указанием возможных значений и их вероятностей.

Пример 1: число очков при бросании кости

Значения хi:

1

2

3

4

5

6

Вероятности р(хi)

1/6

1/6

1/6

1/6

1/6

1/6

Функция распределения:

Функция распределения числа очков при бросании кости

Обратите внимание: Хотя случайная величина принимает только дискретные значения ее функция распределения определена для любых х.

Например: F(-1) = 0, F(0) = 0, F(0.999) = 0, F(1.001) = 1/6, F(3.5) = 3/6, F(7) = 1.

Для непрерывных случайных величин вводится понятие плотности распределения р(х), которая есть производная от функци распределения.

Вероятность того, что случайная величина ξ примет значение, лежащее в интервале (а,b) равна разности значений функции распределения на концах интервала

P{ a≤ ξ <b } = F(b) - F(a).                     

Для непрерывных случайных величин

Важно помнить, что всегда для дискретных распределений сумма р(хi) по всем возможным значениям хi равна 1; для непрерывных распределений

Типичные законы распределения и числовые характеристики случайных величин

Вид функций F(x), р(х), или перечисление р(хi) называют законом распределения случайной величины. Хотя можно представить себе бесконечное разнообразие случайных величин, законов распределения гораздо меньше. Во-первых, различные случайные величины могут иметь совершенно одинаковые законы распределения. Во-вторых, очень часто случайные величины имеют подобные законы распределения, т.е., например, р(х) для них выражается формулами одинакового вида, отличающимися только одной или несколькими постоянными. Эти постоянные называются параметрами распределения.

Хотя в принципе возможны самые разные законы распределения, здесь будут рассмотрены несколько наиболее типичных законов. Важно обратить внимание на условия, в которых они возникают, параметры и свойства этих распределений.

  1 .   Равномерное распределение Так называют распределение случайной величины, которая может принимать любые значения в интервале (a,b), причем вероятность попадания ее в любой отрезок внутри (a,b) пропорциональна длине отрезка и не зависит от его положения, а вероятность значений вне (a,b) равна 0.

Функция и плотность равномерного распределения

Параметры распределения: a , b

  2 .   Нормальное распределение Распределение с плотностью, описываемой формулой

называется нормальным. Параметры распределения: a , σ

Типичный вид плотности и функции нормального распределения

  3 .   Распределение Бернулли Если производится серия независимых испытаний, в каждом из который событие А может появиться с одинаковой вероятностью р, то число появлений события есть случайная величина, распределенная по закону Бернулли, или по биномиальному закону (другое название распределения).

Здесь n - число испытаний в серии, m - случайная величина (число появлений события А), Рn(m) - вероятность того, что А произойдет именно m раз, q = 1 - р (вероятность того, что А не появится в испытании).

Параметры распределения: n , р

  4 .   Распределение Пуассона Распределение Пуассона получается как предельный случай распределения Бернулли, если устремить р к нулю, а n к бесконечности, но так, чтобы их произведение оставалось постоянным: nр = а. Формально такой предельный переход приводит к формуле

Параметр распределения: a

Распределению Пуассона подчиняются очень многие случайные величины, встречающиеся в науке и практической жизни.